Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T01:55:38.654Z Has data issue: false hasContentIssue false

A Tabular Summary of Research Dealing with Translocation of Foliar-Applied Herbicides and Selected Growth Regulators

Published online by Cambridge University Press:  12 June 2017

Herbert M. Hull*
Affiliation:
Crops Research Division, A.R.S., U.S.D.A., Box 5735, Tucson, Arizona
Get access

Extract

The table briefly summarizes research findings involving the translocation of organic herbicides and certain selected growth regulators in higher plants. Gibberellic acid, indoleacetic acid, naphthaleneacetic acid and other “on-herbicide” growth regulators are for the most part not listed except when used in experiments with the more generally accepted herbicides. For tabular information on translocation of auxins and other growth substances, the reader is referred to the Handbook of Biological Data, mentioned later. Information in the table is based on techniques which primarily utilize foliar application and for the most part does not include application via root system, injection, or bark application. As a consequence, most substances listed may be assumed to be transported predominantly in the phloem, but in numerous cases the compounds also move into the xylem.

Type
Research Article
Information
Weeds , Volume 8 , Issue 2 , April 1960 , pp. 214 - 231
Copyright
Copyright © 1960 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Andersen, Otto. Studies on the absorption and translocation of amitrol (3–amino–1,2,4–triazole) by nut grass (Cyperus rotundus L.). Weeds 6:370385. 1958.Google Scholar
2. Arnaud, J., Barge, P., Richez, M., and Gautheret, R. J. Action de l'hydrazide maleique sur l'elaboration des glucides par les feuilles de tabac. Compt. Rend. Acad. Agric. France 42:168171. 1956.Google Scholar
3. Ashton, F. M. The effect of gibberellic acid on the absorption and translocation of 2,4–D in red kidney bean. Plant Physiol. 33(sup.):xxxix. 1958.Google Scholar
4. Ashton, F. M. Absorption and translocation of radioactive 2,4–D in sugarcane and bean plants. Weeds 6:257262. 1958.CrossRefGoogle Scholar
5. Baldwin, Roger E., Freed, Virgil H., and Fang, S. C. Herbicide action. Absorption and translocation of carbon–14 applied as o–isopropyl N–phenyl carbamate in Avena. and Zea . J. Agric. and Food Chem. 2:428430. 1954.CrossRefGoogle Scholar
6. Barrier, Geo. E., and Loomis, W. E. Absorption and translocation of 2,4–dichlorophenoxyacetic acid and P32 by leaves. Plant Physiol. 32:225231. 1957.Google Scholar
7. Blair, Byron O., and Fuller, W. H. Translocation of 2,4–dichloro–5–iodophenoxyacetic acid in velvet mesquite seedlings. Bot. Gaz. 113:368372. 1952.CrossRefGoogle Scholar
8. Blanchard, F. A. Uptake, distribution, and metabolism of carbon–14 labeled trichloroacetate in corn and pea plants. Weeds 3:274278. 1954.CrossRefGoogle Scholar
9. Brown, M.S., and Hitz, C. W. An interpretation of the influence of maleic hydrazide upon the growth of strawberry runners based upon radioisotope studies. Amer. Soc. Hort. Sci., Proc. 70:131143. 1957.Google Scholar
10. Burr, G. O., Tanimoto, T., Hartt, C. E., Forbes, A., Sadaoka, G., Ashton, F. M., Payne, J. H., Silva, J. A., and Sloane, G. E. Uses of radioisotopes by the Hawaiian Sugar Plantations. In Peaceful uses of atomic energy, International Conf. in Geneva, Proc. 12:177183. 1955.Google Scholar
11. Burrows, V. D., and Bonner, J. Translocation of 2,4–D and labeled water in the red kidney bean. Plant Physiol. 33(sup.):xxi. 1958.Google Scholar
12. Carvell, K. L. Translocation of ammate. Forest Science 1:4143. 1955.Google Scholar
13. Clor, M. A., and Crafts, A. S. Comparative translocation of C14-labeled 2,4–D, amino–triazole and urea in cotton plants and subsequent leakage from roots. Plant Physiol. 32(sup.):xliii. 1957.Google Scholar
14. Crafts, A. S. Herbicides. Their absorption and translocation. Agric. and Food Chem. 1:5155. 1953.Google Scholar
15. Crafts, A. S. Translocation of herbicides. I. The mechanism of translocation: methods of study with C14-labeled 2,4–D. Hilgardia 26:287334. 1956.CrossRefGoogle Scholar
16. Crafts, A. S. Translocation of herbicides. II. Absorption and translocation of 2,4–D by wild morning glory. Hilgardia 26:335365. 1956.CrossRefGoogle Scholar
17. Crafts, A. S. Comparative mobility of labelled herbicides in plants. World Crops 10 (2):66. 1958.Google Scholar
18. Crafts, A. S., Currier, H. B., and Day, B. E. Response of several crop plants and weeds to maleic hydrazide. Hilgardia 20:5780. 1950.Google Scholar
19. Crafts, A. S., and Drever, H. R. Some studies on the herbicidal properties of maleic hydrazide. Hilgardia 27:723757. 1958.CrossRefGoogle Scholar
20. Crafts, A. S., and Foy, C. L. Autoradiography of radioactive dalapon. Down to Earth 14(4), Spring. p. 26. 1959.Google Scholar
21. Crafts, A. S., and Yamaguchi, S. Comparative tests on the uptake and distribution of labeled herbicides by Zebrina pendula and Tradescantia fluminensis. Hilgardia 27:421454. 1958.CrossRefGoogle Scholar
22. Curtis, R. W. Translocatable plant growth inhibitors produced by Penicillium thomii and Arachniotus trisporus. Plant Physiol. 32:5659. 1957.Google Scholar
23. Day, B. E. The absorption and translocation of 2,4–dichlorophenoxyacetic acid by bean plants. Plant Physiol. 27:143152. 1952.CrossRefGoogle Scholar
24. Dhillon, A. S., and Lucas, E. H. Absorption, translocation, and persistence of 2,4–dichlorophenoxyacetic acid in some plants. Bot. Gaz. 112:198207. 1950.CrossRefGoogle Scholar
25. Doxey, D. The use of radioactive iodine in the study of a plant growthregulator. Jour. Expt. Bot. 4:5358. 1953.CrossRefGoogle Scholar
26. Earle, T. T., Riess, K., and Hidalgo, J. Tracer studies with alligator weed using 2,4–D–C14 . Science 114:695696. 1951.CrossRefGoogle ScholarPubMed
27. Fang, S. C. Absorption, translocation and metabolism of 2,4–D–1–C14 in pea and tomato plants. Weeds 6:179186. 1958.CrossRefGoogle Scholar
28. Fang, S. C., and Butts, J. S. Studies in plant metabolism. III. Absorption, translocation and metabolism of radioactive 2,4–D in corn and wheat plants. Plant Physiol. 29:5660. 1954.CrossRefGoogle Scholar
29. Fang, S. C., and Butts, J. S. Studies of carboxyl–C14-labeled 3–indoleacetic acid in plants. Plant Physiol. 32:253259. 1957.Google Scholar
30. Fang, S. C., and Butts, J. S., Freed, V. H., Johnson, R. H., and Coffee, D. R. Herbicide action. Absorption, translocation, and metabolism of radioactive 3–(p–chlorophenyl)–1,1–dimethylurea (CMU) by bean plants. Agric. and Food Chem. 3:400402. 1955.Google Scholar
31. Fang, S. C., Jaworski, E. G., Logan, A. V., Freed, V. H., and Butts, J. S. The absorption of radioactive 2,4–dichlorophenoxyacetic acid and the translocation of C14 by bean plants. Arch. Biochem. and Biophys. 32:249255. 1951.Google Scholar
32. Ferri, M. G. Preliminary observations on the translocation of synthetic growth substances. Contrib. Boyce Thompson Inst. 14:5168. 1945.Google Scholar
33. Fisher, C. E., Meadors, C. H., and Behrens, R. Some factors that influence the effectiveness of 2,4,5–trichlorophenoxyacetic acid in killing mesquite. Weeds 4:139147. 1956.Google Scholar
34. Gallup, A. H., and Gustafson, F. G. Absorption and translocation of radioactive 2,4–dichloro–5–iodo–131–phenoxyacetic acid by green plants. Plant Physiol. 27:603612. 1952.CrossRefGoogle ScholarPubMed
35. Hall, W. C., Johnson, S. P., and Leinweber, C. L. Amino triazole. A new abscission chemical and growth inhibitor. Bul. 789, Texas Agr. Expt. Sta., College Station. 1954.Google Scholar
36. Haun, J. R., and Peterson, J. H. Translocation of 3–(p–chlorophenyl)–1,1–dimethylurea in plants. Weeds 3:177187. 1954.Google Scholar
37. Hauser, Ellis W., and Thompson, J. Effects of 3–amino–1,2,4–triazole and derivatives on nutgrass and Johnson grass. Agr. and Food Chem. 2:680681. 1954.Google Scholar
38. Hauser, Ellis W., and Thompson, J. A study of the absorption and translocation of several chemicals in Johnson grass, and an evaluation of their effectiveness for its control under field conditions. Weeds 7:2033. 1959.Google Scholar
39. Hay, J. R. Experiments on the mechanism for the translocation of 2,4–D. Plant Physiol. 30(sup.):v. 1955.Google Scholar
40. Hay, J. R. Translocation of herbicides in marabu. I. Translocation of 2,4,5–trichlorophenoxyacetic acid following application to the bark or to cut-surfaces of stumps. Weeds 4:218226. 1956.Google Scholar
41. Hay, J. R. Translocation of herbicides in marabu. II. Translocation of 2,4–dichlorophenoxyacetic acid following foliage application. Weeds 4: 349356. 1956.CrossRefGoogle Scholar
42. Hay, J. R. and Thimann, K. V. The fate of 2,4–dichlorophenoxyacetic acid in bean seedlings. II. Translocation. Plant Physiol. 31:446451. 1956.Google Scholar
43. Holley, R. W. Studies of the fate of radioactive 2,4–dichlorophenoxyacetic acid in bean plants. II. A water-soluble transformation product of 2,4–D. Arch. Biochem. and Biophys. 35:171175. 1952.Google Scholar
44. Holley, R. W., Boyle, F. P., and Hand, D. B. Studies of the fate of radioactive 2,4–dichlorophenoxyacetic acid in bean plants. Arch. Biochem. 27:143151. 1950.Google Scholar
45. Hull, H. M. Studies on herbicidal absorption and translocation in velvet mesquite seedlings. Weeds 4:2242. 1956.CrossRefGoogle Scholar
46. Hull, H. M. Anatomical studies demonstrating phloem inactivation and its dependency upon the interaction of concentrations of 2,4,5–trichlorophenoxyacetic acid and an anionic wetting agent. Plant Physiol. 32(sup.): xliii. 1957.Google Scholar
47. Jaworski, E. G., Fang, S. C., and Freed, V. H. Studies in plant metabolism. V. The metabolism of radioactive 2,4–D in etiolated bean plants. Plant Physiol. 30:272275. 1955.CrossRefGoogle Scholar
48. Krewson, C. F., Neufeld, C. H. H., Drake, T. F., Fontaine, T. D., Mitchell, J. W., and Preston, W. H. Jr. Synthetic plant-growth modifiers. IV. 2–methyl–4–chlorophenoxyacetyl derivatives of amino acids. Weeds 3:2837. 1954.Google Scholar
49. Krewson, C. F., Saggese, E. J., Carmichael, J. F., Ard, J. S., Drake, T. F. Mitchell, J. W., and Smale, B. C. Plant growth regulators. Synthesis and preliminary evaluations of amide, lactic acid, and terpenoid derivatives of substituted phenoxycarboxylic acids. Agr. and Food Chem. 7:118122. 1959.CrossRefGoogle Scholar
50. Laning, Enos, R. Sodium 2,2–dichloropropionate and sodium 2,2,3–trichloropropionate absorption and translocation in certain vegetable crops and residual activity in soil. Diss. Abs. 18:1197. 1958.Google Scholar
51. Leonard, O. A. Studies on the absorption and translocation of 2,4–D in bean plants. Hilgardia 28:115160. 1958.Google Scholar
52. Leonard, O. A. and Crafts, A. S. Translocation of herbicides. III. Uptake and distribution of radioactive 2,4–D by brush species. Hilgardia 26:366415. 1956.Google Scholar
53. Linden, G. Über die Wirkung wiederholter Behandlung mit subletalen Konzentrationen der 2,4–Dichlorphenoxyessigsäure (2,4–D) auf Sinapis alba sowie weitere Untersuchungen zu Transport und Wirkungsweise der Wuchsstoffe in der Pflanze. Beitr. Biol. Pfl. 30:343378. 1954.Google Scholar
54. Linder, P. J., Brown, J. W., and Mitchell, J. W. Movement of externally applied phenoxy compounds in bean plants in relation to conditions favoring carbohydrate translocation. Bot. Gaz. 110:628632. 1949.Google Scholar
55. Linder, P. J., Craig, J. C. Jr., Cooper, F. E., and Mitchell, J. W. Translocation of growth regulators. Movement of 2,3,6–trichlorobenzoic acid from one plant to another through their root systems. Agric. and Food Chem. 6:356357. 1958.Google Scholar
56. Linder, P. J., Craig, J. C. Jr., and Walton, T. R. Movement of C14-tagged alphamethoxyphenylacetic acid out of roots. Plant Physiol. 32:572575. 1957.CrossRefGoogle ScholarPubMed
57. Linder, P. J., Mitchell, J. W., and Wood, J. W. Effects of 2,4–dichloro–5–iodophenoxyacetic acid and its derivatives as plant growth regulators. Science 111:518519. 1950.Google Scholar
58. Massini, P. Uptake and translocation of 3–amino–and–3–hydroxy–1,2,4–triazole in plants. Acta Bot. Neerl. 7:524530. 1958.Google Scholar
59. Miller, C. S., and Hall, W. C. Amino triazole salts and amino triazole–5–C14 studies on pigment production in cotton. Weeds 5:304315. 1957.CrossRefGoogle Scholar
60. Mitchell, J. W., Dugger, W. M. Jr., and Gauch, H. G. Increased translocation of plant-growth-modifying substances due to application of boron. Science 118:354355. 1953.Google Scholar
61. Mitchell, J. W., and Linder, P. J. Absorption and translocation of radioactive 2,4–DI by bean plants as affected by cosolvents and surface agents. Science 112:5455. 1950.Google Scholar
62. Mitchell, J. W., Marth, P. C., and Preston, W. H. Jr. Structural modification that increases translocatability of some plant regulating carbamates. Science 120:263265. 1954.Google Scholar
63. Mitchell, J. W., and Preston, W. J. Jr. Secondary galls and other plant growthmodifying effects induced by translocated α–methoxyphenylacetic acid. Science 118:518519. 1953.Google Scholar
64. Mitchell, J. W., Wirwille, J. W., and Weil, L. Plant growth-regulating properties of some nicotinium compounds. Science 110:252254. 1949.CrossRefGoogle ScholarPubMed
65. Mitchell, J. W., Wood, J. W., Wolfe, W. C., and Irving, G. W. Jr. Relative growth rates of bean and oat plants containing known amounts of a labeled plant-growth regulator (2–iodo131–3–nitrobenzoic acid). Science 106:395397. 1947.CrossRefGoogle ScholarPubMed
66. Munakata, K., and Nakai, A. Growth regulator action. Absorption and translocation of 2–I131–2,3,5–triiodobenzoic acid. Agric. and Food Chem. 7:176178. 1959.Google Scholar
67. Muzik, T. J., Cruzado, H. J., and Loustalot, A. J. Studies on the absorption, translocation, and action of CMU. Bot. Gaz. 116:6573. 1954.Google Scholar
68. Naylor, A. W., and Davis, E. A. Maleic hydrazide as a plant growth inhibitor. Bot. Gaz. 112:112126. 1950.Google Scholar
69. Pallas, J. E. Effects of temperature and humidity on the absorption and translocation of 2,4–dichlorophenoxyacetic acid and benzoic acid. Plant Physiol. 33(sup.):xxi. 1958.Google Scholar
70. Petersen, H. Ingv. Translocation of 14C-labelled 2,4–dichlorophenoxyacetic acid in barley and oats. Nature 182 (4650): 16851686. 1958.Google Scholar
71. Preston, W. H. Jr., Mitchell, J. W., and Reeve, W. Movement of alphamethoxyphenylacetic acid from one plant to another through their root systems. Science 119:437438. 1954.CrossRefGoogle ScholarPubMed
72. Racusen, D. The metabolism and translocation of 3–aminotriazole in plants. Arch. Biochem. and Biophys. 74:106113. 1958.CrossRefGoogle Scholar
73. Rice, E. L. Absorption and translocation of ammonium 2,4–dichlorophenoxyacetate by bean plants. Bot. Gaz. 109:301314. 1948.Google Scholar
74. Rice, E. L. and Rohrbaugh, L. M. Effect of kerosene on movement of 2,4–dichlorophenoxyacetic acid and some derivatives through destarched bean plants in darkness. Bot. Gaz. 115:7681. 1953.Google Scholar
75. Rice, E. L. and Rohrbaugh, L. M. Relation of potassium nutrition to the translocation of 2,4–dichlorophenoxyacetic acid in tomato plants. Plant Physiol. 33:300303. 1958.Google Scholar
76. Rogers, Bruce J. Translocation and fate of amino triazole in plants. Weeds 5:511. 1957.Google Scholar
77. Rohrbaugh, L. M., and Rice, E. L. Relation of phosphorus nutrition to the translocation of 2,4–dichlorophenoxyacetic acid in tomato plants. Plant Physiol. 31:196199. 1956.Google Scholar
78. Shiue, Cherng-Jiann, Hossfeld, R. L., and Rees, L. W. Absorption and translocation of 2,4,5–trichlorophenoxyacetic acid derivatives in quaking aspen. Forest Sci. 4:319324. 1958.Google Scholar
79. Smale, B. C., and Daley, E. J. Translocation of growth regulators. Identification of translocated regulating chemicals through plant response and chromatography. Agric. and Food Chem. 6:751752. 1958.Google Scholar
80. Weaver, R. J., and DeRose, H. R. Absorption and translocation of 2,4–dichlorophenoxyacetic acid. Bot. Gaz. 107:509521. 1946.Google Scholar
81. Weintraub, R. L., and Brown, J. W. Influence of temperature on formative response of bean seedlings to 2,4–dichlorophenoxyacetic acid. Amer. Jour. Bot. 37:682. 1950.Google Scholar
82. Weintraub, R. L., and Brown, J. W. Translocation of exogenous growth-regulators in the bean seedling. Plant Physiol. 25:140149. 1950.Google Scholar
83. Weintraub, R. L., and Yeatman, J. N. Recovery of growth regulator from plants treated with 2,4–dichlorophenoxyacetic acid. Science 111:493494. 1950.Google Scholar
84. Weintraub, R. L., Reinhart, J. H., and Scherff, R. A. Role of entry, translocation, and metabolism in specificity of 2,4–D and related compounds In A Conf. on Radioactive Isotopes in Agr., Atomic Energy Comm. Rpt. No. TID–7512, pp. 203208. 1956.Google Scholar
85. Williams, M. C. Absorption and translocation of 2,4–dichlorophenoxyacetic acid in certain annual dicotyledons. Ph.D. Diss., U. Ill. (Diss. Abst. 16:1771) 1956.Google Scholar
86. Wood, J. W., Mitchell, J. W., and Irving, G. W. Jr. Translocation of a radioactive plant-growth regulator in bean and barley plants. Science 105:337339. 1947.Google Scholar
87. Yamaguchi, S., and Crafts, A. S. Translocation of 2,4–D in Zebrina pendula is greatly affected by growth rate. Plant Physiol. 32(sup.):xliixliii. 1957.Google Scholar