Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T02:41:32.188Z Has data issue: false hasContentIssue false

Wild Oat (Avena fatua) vs. Redstem Filaree (Erodium cicutarium) Interference in Dry Pea

Published online by Cambridge University Press:  20 January 2017

K. Neil Harker*
Affiliation:
Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, Lacombe, AB, Canada, T4L 1W1
Robert E. Blackshaw
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, Box 3000, Lethbridge, AB, Canada, T1J4B1
George W. Clayton
Affiliation:
Sustainable Production Systems, Agriculture and Agri-Food Canada, Lethbridge Research Centre, Box 3000, Lethbridge, AB, Canada, T1J 4B1
*
Corresponding author's E-mail: [email protected]

Abstract

Dry peas (pea) usually require early and effective weed management for optimum yields. However, it is not always possible to control all weeds with a single herbicide application. In experiments at Lacombe and Lethbridge, Alberta, Canada, we determined the relative importance of controlling redstem filaree or wild oat, or both species. Bentazon, sethoxydim, or a imazethapyr/imazamox mixture was applied to control redstem filaree, wild oat, or both weeds, respectively. None of the herbicides caused visually detectable crop injury. Time of weed removal effects on pea yield were inconsistent. In addition, applying half or full herbicide rates did not usually influence weed biomass, pea yield, or pea seed weight. Averaged across all variables except herbicide, pea yield losses due to competition from redstem filaree, wild oat, or both species averaged 31, 47, or 53%, respectively. When redstem filaree and wild oat were controlled with imazethapyr/imazamox, pea yields were the same as weed-free check plots in three of four location-years (89% of weed-free yields for all four location-years). Optimal pea yields in weed communities with redstem filaree and wild oat as dominant species were more dependent upon selecting an herbicide that controlled both species than a specific time of weed removal or herbicide rate.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beckie, H. J., Thomas, A. G., Légère, A., Kelner, D. J., Van Acker, R. C., and Meers, S. 1999. Nature, occurrence, and cost of herbicide-resistant wild oat (Avena fatua) in small-grain production areas. Weed Technol. 13:612625.CrossRefGoogle Scholar
Bellinder, R. R., Arsenovic, M., Shah, D. A., and Rauch, B. J. 2003. Effect of weed growth stage and adjuvant on the efficacy of fomesafen and bentazon. Weed Sci. 51:10161021.Google Scholar
Blackshaw, R. E. 1992. Soil temperature, soil moisture, and seed burial depth effects on redstem filaree (Erodium cicutarium) emergence. Weed Sci. 40:204207.Google Scholar
Blackshaw, R. E. 1998. Postemergence weed control in pea (Pisum sativum) with imazamox. Weed Technol. 13:6468.Google Scholar
Blackshaw, R. E., Brandt, R. N., Janzen, H. H., Entz, T., Grant, C. A., and Derksen, D. A. 2003. Differential response of weed species to added nitrogen. Weed Sci. 51:532539.Google Scholar
Blackshaw, R. E. and Entz, T. 1995. Day and night temperature effects on vegetative growth of Erodium cicutarium . Weed Res. 35:471476.Google Scholar
Blackshaw, R. E. and Harker, K. N. 1998a. Erodium cicutarium density and duration of interference effects on yield of wheat, oilseed rape, pea and dry bean. Weed Res. 38:5562.Google Scholar
Blackshaw, R. E. and Harker, K. N. 1998b. Redstem filaree (Erodium cicutarium) development and productivity under noncompetitive conditions. Weed Technol. 12:590594.Google Scholar
Blackshaw, R. E., Semach, G. P., and O'Donovan, J. T. 2000. Wheat seed rate affects redstem filaree (Erodium cicutarium) interference and seed production in a zero tillage cropping system. Weed Technol. 14:389396.CrossRefGoogle Scholar
Boerboom, C. M. and Young, F. L. 1995. Effect of postplant tillage and crop density on broadleaf weed control in dry pea (Pisum sativum) and lentil (Lens culinaris). Weed Technol. 9:99106.Google Scholar
Brook, H. 2006. Crop Protection 2006. AGDEX 606-1 Edmonton, AB Alberta Agriculture, Food and Rural Development.Google Scholar
Chernicky, J. P., Gossett, B. J., and Murphy, T. R. 1984. Factors influencing control of annual grasses with sethoxydim or RO-13-8895. Weed Sci. 32:174177.CrossRefGoogle Scholar
Clayton, G. W., Harker, K. N., O'Donovan, J. T., Baig, M. N., and Kidnie, M. J. 2002. Glyphosate timing and tillage system effects on glyphosate-tolerant canola (Brassica napus). Weed Technol. 16:124130.CrossRefGoogle Scholar
Coupland, D. 1987. Influence of environmental factors on the performance of sethoxydim against Elymus repens (L.). Weed Res. 27:329336.Google Scholar
Dew, D. A. and Keys, C. H. 1976. An index of competition for estimating loss of rape due to wild oats. Can. J. Plant Sci. 56:10051006.Google Scholar
Dunan, C. M., Westra, P., Schweizer, E. E., Lybecker, D. W., and Moore, F. D. III. 1995. The concept and application of early economic period threshold: the case of DCPA in onions. Weed Sci. 43:634639.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40:441447.Google Scholar
Harker, K. N. 2001. Survey of yield losses due to weeds in central Alberta. Can. J. Plant Sci. 81:339342.CrossRefGoogle Scholar
Harker, K. N., Blackshaw, R. E., and Clayton, G. W. 2001. Timing weed removal in field peas (Pisum sativum). Weed Technol. 15:277283.Google Scholar
Hornford, R. G. and Drew, B. N. 1985. Yield reductions in field peas and lentils resulting from volunteer crop competition. Proc. West. Soc. Weed Sci. 38:122125.Google Scholar
Klingaman, T. E., King, C. A., and Oliver, L. R. 1992. Effect of application rate, weed species, and weed stage of growth on imazethapyr activity. Weed Sci. 40:227232.Google Scholar
Lawson, H. M. 1982. Competition between annual weeds and vining peas grown at a range of population densities: effects on the crop. Weed Res. 22:2738.Google Scholar
Leeson, J. Y., Thomas, A. G., Hall, L. M., Brenzil, C. A., Andrews, T., Brown, K. R., and Van Acker, R. C. 2005. Prairie weed surveys of cereal, oilseed and pulse crops from the 1970s to the 2000s. Agriculture and Agri-Food Canada Weed Survey Series 05-1. Saskatoon, SK. 395.Google Scholar
Leif, J. W., Vollmer, J. L., Hartberg, T. J., and Ballard, T. O. 2000. Growth and response of common ragweed (Ambrosia artemisiifolia) ecotypes to imazethapyr. Weed Technol. 14:150155.CrossRefGoogle Scholar
Littel, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. 1996. SAS System for Mixed Models. Cary, NC SAS Institute. 656.Google Scholar
Martin, S. G., Friesen, L. F., and Van Acker, R. C. 2001. Critical period of weed control in spring canola. Weed Sci. 49:326333.Google Scholar
May, W. E., Lafond, G. P., Johnson, E. N., Hogg, T., Johnston, A. M., Nybo, B., Harker, N., and Clayton, G. 2003. An assessment of the concept of early time of weed removal in field pea using natural weed populations. Can. J. Plant Sci. 83:423431.Google Scholar
Miller, P. R., McConkey, B. G., Clayton, G. W., Brandt, S. A., Staricka, J. A., Johnston, A. M., Lafond, G. P., Schatz, B. G., Baltensperger, D. D., and Neill, K. E. 2002. Pulse crop adaptation in the northern Great Plains. Agron. J. 94:261272.Google Scholar
Nalewaja, J. D., Palczynski, J., and Manthey, F. A. 1990. Imazethapyr efficacy with adjuvants and environments. Weed Technol. 4:765770.Google Scholar
Nalewaja, J. D., Pudelko, J., and Adamczewski, K. A. 1975. Influence of climate and additives on bentazon. Weed Sci. 23:504507.Google Scholar
Nelson, D. C. and Nylund, R. E. 1962. Competition between peas grown for processing and weeds. Weeds 10:224229.Google Scholar
Norris, R. F. 1992. Case history for weed competition/population ecology: barnyardgrass (Echinochloa crus-galli) in sugarbeets (Beta vulgaris). Weed Technol. 6:220227.Google Scholar
O'Sullivan, P. A., Weiss, G. M., and Kossatz, V. C. 1985. Indices of competition for estimating rapeseed yield loss due to Canada thistle. Can. J. Plant Sci. 65:145149.Google Scholar
Przednowek, D. W. A., Entz, M. H., Irvine, B., Flaten, D. N., and Martens, J. R. T. 2004. Rotational yield and apparent N benefits of grain legumes in southern Manitoba. Can. J. Plant Sci. 84:10931096.Google Scholar
Rajcan, I., Chandler, K. J., and Swanton, C. J. 2004. Red-far-red ratio of reflected light: a hypothesis of why early season weed control is important in corn. Weed Sci. 52:774778.Google Scholar
Sharma, M. P. and Born, W. H. Vanden 1978. The biology of Canadian weeds. 27. Avena fatua L. Can. J. Plant Sci. 58:141157.Google Scholar
Soon, Y. K., Harker, K. N., and Clayton, G. W. 2004. Plant competition effects on the nitrogen economy of field pea and the subsequent crop. J. Soil Sci. Soc. Am. 68:552557.Google Scholar
Stoller, E. W., Harrison, S. K., Wax, L. M., Regnier, E. E., and Nafziger, E. D. 1987. Weed interference in soybeans (Glycine max). Rev. Weed Sci. 3:155181.Google Scholar
Swinton, S. M., Buhler, D. D., Forcella, F., Gonsolus, G. A., and King, R. P. 1994. Estimation of crop yield loss due to interference by multiple weed species. Weed Sci. 42:103109.Google Scholar
VanGessel, M. J. and Renner, K. A. 1990. Redroot pigweed (Amaranthus retroflexus) and barnyardgrass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Sci. 38:338343.Google Scholar
Wall, D. A. 1993. Comparison of green foxtail (Setaria viridis) and wild oat (Avena fatua) growth, development, and competitiveness under three temperature regimes. Weed Sci. 41:369378.Google Scholar
Wall, D. A., Friesen, G. H., and Bhati, T. K. 1991. Wild mustard interference in traditional and semi-leafless field peas. Can. J. Plant Sci. 71:473480.Google Scholar
Wills, G. D. 1984. Toxicity and translocation of sethoxydim in bermudagrass (Cynodon dactylon) as affected by environment. Weed Sci. 32:2024.Google Scholar
Yenish, J. P. and Eaton, N. A. 2002. Weed control in dry pea (Pisum sativum) under conventional and no-tillage systems. Weed Technol. 16:8895.CrossRefGoogle Scholar
Young, F. L., Ogg, A. G. Jr, Boerboom, C. M., Alldredge, J. R., and Papendick, R. I. 1994. Integration of weed management and tillage practices in spring dry pea production. Agron. J. 86:868874.CrossRefGoogle Scholar