Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T09:46:41.407Z Has data issue: false hasContentIssue false

Western Ragweed (Ambrosia psilostachya) Control and Bermudagrass Response to Diflufenzopyr Tank-Mix Combinations

Published online by Cambridge University Press:  20 January 2017

Matthew E. Matocha*
Affiliation:
Texas A&M AgriLife Extension Service, College Station, TX 77843
Paul A. Baumann
Affiliation:
Texas A&M AgriLife Extension Service, College Station, TX 77843
Mark A. Matocha
Affiliation:
Texas A&M AgriLife Extension Service, College Station, TX 77843
*
Corresponding author's E-mail: [email protected]

Abstract

Research was conducted in 2003 and 2004 to evaluate diflufenzopyr tank mixes for western ragweed control and injury to ‘Tifton 85′ bermudagrass. In 2003 at 94 DAT, picloram at 0.28 and 0.56 kg ae ha−1 with or without diflufenzopyr provided greater than 95% control of western ragweed, whereas triclopyr + dilfufenzopyr, dicamba + diflufenzopyr, triclopyr alone, and diflufenzopyr alone provided < 77% control. In 2004 at 95 DAT, only the highest rate of picloram alone provided 96% control, and the two highest rates of picloram + diflufenzopyr provided at least 95% control. Tifton 85 bermudagrass growth reduction increased with the addition of diflufenzopyr to picloram in 2003, but not in 2004. However, forage dry-matter yield was not reduced by any herbicide treatment compared to the nontreated control. Results of these studies indicate that picloram alone and picloram + diflufenzopyr provide excellent control of western ragweed. The tank mixture of picloram + diflufenzopyr can improve control over picloram alone. However, dicamba + diflufenzopyr, triclopyr + diflufenzopyr, triclopyr alone, and diflufenzopyr alone did not provide adequate control.

En 2003 y 2004 se realizó una investigación para evaluar mezclas en tanque con diflufenzopyr para el control de Ambrosia psilostachya y el daño en Cynodon dactylon ‘Tifton 85′. En 2003 a 94 DAT, picloram a 0.28 y 0.56 kg ae ha−1 con o sin diflufenzopyr brindó un control superior a 95% de A. psilostachya, mientras que triclopyr + diflufenzopyr, dicamba + diflufenzopyr, triclopyr solo, y diflufenzopyr solo, brindaron control <77%. En 2004 a 95 DAT, solamente la dosis más alta de diflufenzopyr solo brindó 96% de control, y las dos dosis más altas de picloram + diflufenzopyr brindaron al menos 95% de control. La reducción en el crecimiento de C. dactylon ‘Tifton 85′ aumentó con la adición de diflufenzopyr a picloram en 2003, pero no en 2004. Sin embargo, el rendimiento en materia seca del forraje no se redujo con ninguno de los tratamientos de herbicidas al compararse estos con el testigo no-tratado. Los resultados de estos estudios indican que picloram solo y picloram + diflufenzopyr brindan un control excelente de A. psilostachya. La mezcla en tanque de picloram + diflufenzopyr puede mejorar el control en comparación con picloram solo. Sin embargo, dicamba + diflufenzopyr, triclopyr + diflufenzopyr, triclopyr solo, y diflufenzopyr solo no brindaron un control adecuado.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baumann, P. A. and Smith, J. W. III. 2000. Effectiveness of fluroxypyr and picloram for controlling marshelder (Iva annua), western ragweed (Ambrosia psilostachya), and woolly croton (Croton capitatus). Proc. South. Weed Sci. Soc. 53:59.Google Scholar
Bovey, R. W., McCarty, M. K., and Davis, F. S. 1966. Control of perennial ragweed on western Nebraska rangeland. J. Range Manage. 19:220222.CrossRefGoogle Scholar
Bowe, S., Landes, M., Best, J., Schmitz, G., and Graben, M. 1999. BAS 662H: an innovative herbicide for weed control in corn. Proc. Brighton Conf. Weeds. 1:3540.Google Scholar
Burton, G. W., Gates, R. N., and Hill, G. M. 1993. Registration of Tifton 85 bermudagrass. Crop Sci. 33:644645.CrossRefGoogle Scholar
Burton, G. W. and Hanna, W. W. 1995. Bermudagrass. Pages 421429 in Barnes, R. F., Miller, D. A., and Nelson, C. J., eds. Forages: An Introduction to Grassland Agriculture. Vol. I. Ames, IA Iowa State University Press.Google Scholar
Butler, T. J. and Muir, J. P. 2006. Coastal bermudagrass (Cynodon dactylon) yield response to various herbicides. Weed Technol. 20:95100.CrossRefGoogle Scholar
Butler, T. J., Muir, J. P., and Ducar, J. T. 2006. Weed control and response to herbicides during Tifton 85 bermudagrass establishment from rhizomes. Agron. J. 98:788794.Google Scholar
Dahl, B. E., Mosley, J. C., Cotter, P. F., and Dickerson, R. L. Jr. 1989. Winter forb control for increased grass yield on sandy rangeland. J. Range Manage. 42:400403.CrossRefGoogle Scholar
Dwyer, D. D. 1958. Competition between forbs and grasses. J. Range Manage. 11:115118.CrossRefGoogle Scholar
Elder, W. C. 1951. Controlling perennial ragweed to make better pastures. Stillwater, OK Oklahoma Agric. Exp. Sta. Bull. No. 369.Google Scholar
Enloe, S. F. and Kniss, A. R. 2009. Influence of diflufenzopyr addition to picolinic acid herbicides for Russian knapweed (Acroptilon repens) control. Weed Technol. 23:450454.CrossRefGoogle Scholar
Grossman, K., Caspar, G., Kwiatkowski, J., and Bowe, S. J. 2002. On the mechanism of selectivity of the corn herbicide BAS 662H: a combination of the novel auxin transport inhibitor diflufenzopyr and the auxin herbicide dicamba. Pest. Manage. Sci. 58:10021014.Google Scholar
Hill, G. M., Gates, R. N., and West, J.W. 2001. Advances in bermudagrass research involving new cultivars for beef and dairy production. J. Anim. Sci. 79(E suppl.):E48E58.CrossRefGoogle Scholar
Koger, T. H., Stritzke, J. F., Taliaferro, C. M., and Phillips, W. A. 1997. Bermudagrass tolerance to postemergence herbicides. Proc. Am. Forage Grassl. Counc. 6:8386.Google Scholar
Lym, R. G. 1998. Diflufenzopyr increases perennial weed control with auxin herbicides. Proc. West. Soc. Weed Sci. 51:5962.Google Scholar
Lym, R. G. and Deibert, K. J. 2005. Diflufenzopyr influences leafy spurge (Euphorbia esula) and Canada thistle (Cirsium arvense) control by herbicides. Weed Technol. 19:329341.CrossRefGoogle Scholar
Matocha, M. A., Grichar, W. J., and Grymes, C. 2010. Field sandbur (Cenchrus spinifex) control and bermudagrass response to nicosulfuron tank mix combinations. Weed Technol. 24:510514.CrossRefGoogle Scholar
Mislevy, P. and Martin, F. G. 2006. Biomass yield and forage nutritive value of Cynodon grasses harvested monthly. Ann. Proc. Soil Crop Soc. Fla. 65:914.Google Scholar
Mitich, L. W. 1989. Bermudagrass, intriguing world of weeds. Weed Technol. 3:433435.CrossRefGoogle Scholar
Reece, P. E., Brummer, J. E., Northrup, B. K., Koehler, A. E., and Moser, L. E. 2004. Interactions among western ragweed and other sandhills species after drought. J. Range Manage. 57:583589.CrossRefGoogle Scholar
Taliaferro, C. M., Rouquette, F. M. Jr., and Mislevy, P. 2004. Bermudagrass and stargrass. Pages 417438 in Moser, L. E., Burson, B. L., and Sollenberger, L. E., eds. Warm-Season (C4) Grasses. Monograph 45. Madison, WI American Society of Agronomy.Google Scholar
Vermeire, L. T., and Gillen, R. L. 2000. Western ragweed effects on herbaceous standing crop in Great Plains grasslands. J. Range Manage. 53:335341.CrossRefGoogle Scholar
Wehtje, G. 2008. Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control. Weed Technol. 22:679684.CrossRefGoogle Scholar