Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T18:30:51.012Z Has data issue: false hasContentIssue false

Weed Suppression Potential of ‘Rondo’ and Other Indica Rice Germplasm Lines

Published online by Cambridge University Press:  20 January 2017

David R. Gealy*
Affiliation:
Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, 2890 Highway 130 E, Stuttgart, AR 72160
WenGui Yan
Affiliation:
Dale Bumpers National Rice Research Center, U.S. Department of Agriculture, 2890 Highway 130 E, Stuttgart, AR 72160
*
Corresponding author's E-mail: [email protected]

Abstract

Research was conducted to evaluate the weed suppression potential of ‘Rondo’ (4484-1693; PI 657830), a sister line (4484-1665), and other indica rice lines against barnyardgrass in field plots in Stuttgart, AR, using minimal herbicide inputs in two separate 3-yr experiments. Under weed pressure, Rondo and the sister line (4484-1665) generally produced yields that were comparable to those of weed-suppressive indica standards and approximately 50% greater than those of the least-suppressive commercial cultivars, such as ‘Kaybonnet’, ‘Katy’, and ‘Lemont’. Rice yield under weed pressure was correlated with weed-free yield and harvest height. Indica lines tended to produce more tillers than did the commercial cultivars. Tillering potential under weed-free conditions was not correlated with weed suppression or yield loss; however, tillering under weed pressure was strongly correlated with weed suppression and biomass, and yield and yield loss under the weed densities in these experiments. Rondo is presently being used for commercial organic rice production in Texas, in part due to its high yield potential and ability to suppress or tolerate rice pests, including weeds. Our results suggest that the weed-suppressive ability of Rondo and the other indica lines evaluated in these experiments is superior to that of many commercial cultivars.

Se realizó una investigación en dos experimentos de 3 años de duración en parcelas de campo en Stuttgart, AR, para evaluar el potencial de supresión de malezas de ¨Rondö (4484-1693; PI 657830), una línea hermana (4484-1665), y otras líneas de arroz indica contra Echinochloa crus-galli, con uso mínimo de herbicidas. Bajo presión de malezas, Rondo y la línea hermana (4484-1665) generalmente produjeron rendimientos que fueron comparables con los de las variedades de indica estándar para supresión de malezas y aproximadamente un 50% más que los cultivares comerciales con menor capacidad de supresión, tales como “Kaybonnet”, “Katy” y “Lemont”. El rendimiento del arroz bajo presión de malezas estuvo correlacionado con el rendimiento en condiciones libres de malezas y con la altura al momento de la cosecha. Las líneas indica tendieron a producir más hijos que los cultivares comerciales. El potencial de producción de hijos bajo condiciones libres de malezas no estuvo correlacionada con la supresión de malezas o pérdida en rendimiento. Sin embargo, la producción de hijos con presión de malezas estuvo altamente correlacionada con la supresión de malezas y la biomasa, con el rendimiento y la pérdida en rendimiento bajo las densidades usadas en estos experimentos. Rondo está siendo usada actualmente para producción comercial de arroz orgánico en Texas, en parte debido a su alto potencial de rendimiento y a su habilidad de suprimir o tolerar plagas del arroz, incluyendo malezas. Nuestros resultados sugieren que la habilidad de supresión de malezas de Rondo y otras líneas indica evaluadas en estos experimentos es superior a la de muchos cultivares comerciales.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.Google Scholar
Bollich, C. W., Webb, B. D., Marchetti, M. A., and Scott, J. E. 1985. Registration of ‘Lemont’ rice. Crop Sci. 25:883885.Google Scholar
Caton, B. P., Foin, T. C., and Hill, J. E. 1999. A plant growth model for integrated weed management in direct-seeded rice, III: interspecific competition for light. Field Crop Res. 63:4761.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010a. Relative importance of shoot and root competition in dry-seeded rice growing with junglerice (Echinochloa colona) and ludwigia (Ludwigia hyssopifolia). Weed Sci. 58:295299.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010b. Responses of rice flatsedge (Cyperus iria) and barnyardgrass (Echinochloa crus-galli) to rice interference. Weed Sci. 58:204208.Google Scholar
Dilday, R. H., Mattice, J. D., Moldenhauer, K. A., and Yan, W. 2001a. Allelopathic potential in rice germplasm against ducksalad, redstem and barnyardgrass. J. Crop Prod. 4:287301.Google Scholar
Dilday, R. H., Yan, W. G., Moldenhauer, K. A., Gibbons, J. W., Lee, F. N., and Bryant, R. J. 2001b. Chinese and other foreign germplasm evaluation. Pages 112 in Norman, R. J. and Meullenet, J-F., eds. Bobby R. Wells Rice Research Studies 2000. Arkansas Agricultural Experiment Station, Series 485. Fayetteville, AR University of Arkansas.Google Scholar
Fischer, A. J., Ramirez, H. V., Gibson, K. D., and Pinheiro, B. da S. 2001. Competitiveness of semidwarf upland rice cultivars against palisadegrass (Brachiaria brizantha) and signalgrass (B. decumbens). Agron. J. 93:967973.Google Scholar
Fofana, B. and Rauber, R. 2000. Weed suppression ability of upland rice under low-input conditions in West Africa. Weed Res. 40:271280.Google Scholar
Gealy, D. R. and Fischer, A. J. 2010. 13C discrimination: a stable isotope method to quantify root interactions between C3 rice (Oryza sativa) and C4 barnyardgrass (Echinochloa crus-galli) in flooded fields. Weed Sci. 58:359368.Google Scholar
Gealy, D. R. and Moldenhauer, K. A. K. 2012. Use of 13C isotope discrimination analysis to quantify distribution of barnyardgrass and rice roots in a four-year study of weed-suppressive rice. Weed Sci. 60:133142.Google Scholar
Gealy, D., Ottis, B., Talbert, R., Moldenhauer, K., and Yan, W. 2005. Evaluation and improvement of allelopathic rice germplasm at Stuttgart, Arkansas, USA. Pages 157163 in Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, NSW, Australia: International Allelopathy Society.Google Scholar
Gealy, D. R., Wailes, E. J., Estorninos, L. E. Jr., and Chavez, R. S. C. 2003. Rice cultivar differences in suppression of barnyardgrass (Echinochloa crus-galli) and economics of reduced propanil rates. Weed Sci. 51:601609.Google Scholar
Gibson, K. D., Fischer, A. J., Foin, T. C., and Hill, J. E. 2003. Crop traits related to weed suppression in water-seeded rice (Oryza sativa L.). Weed Sci. 51:8793.Google Scholar
Gravois, K. A., Moldenhauer, K. A. K., Lee, F. N., Norman, R. J., Helms, R. S., Bernhardt, J. L., Wells, B. R., Dilday, R. H., Rohman, P. C., and Blocker, M. M. 1995. Registration of ‘Kaybonnet’ rice. Crop Sci. 35:587588.Google Scholar
[GRIN] Germplasm Resources Information Network, U.S. Department of Agriculture, Agricultural Research Service. 2011 http://www.ars-grin.gov/npgs/. Accessed: September 27, 2011.Google Scholar
Kato-Noguchi, H. and Ino, T. 2005. Concentration and release level of momilactone B in the seedlings of eight rice cultivars. J. Plant Physiol. 162:965969.Google Scholar
Kong, C. H., Hu, F., Wang, P., and Wu, J. L. 2008. Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Manag. Sci. 64:276282.Google Scholar
Kong, C. H., Li, H. B., Hu, F., Xu, X. H., and Wang, P. 2006. Allelochemicals released by rice roots and residues in soil. Plant Soil 288:4756.Google Scholar
Li, X., Yan, W., Agrama, H., Jia, L., Shen, X., Jackson, A., Moldenhauer, K., Yeater, K., McClung, A., and Wu, D. 2011. Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta 234:347361.Google Scholar
Linscombe, S. D., Jodari, F., McKenzie, K. S., Bollich, P. K., White, L. M., Groth, D. E., and Dunand, R. T. 1993. Registration of ‘Bengal’ rice. Crop Sci. 33:645646.Google Scholar
Marchetti, M. A., Bollich, C. N., Webb, B. D., Jackson, B. R., McClung, A. M., and Scott, J. E. 1998. Registration of ‘Jasmine 85’ rice. Crop Sci. 38:896.Google Scholar
Moldenhauer, K. A. K., Gravois, K. A., Lee, F. N., Norman, R. J., Berhardt, J. L., Wells, B. R., Dilday, R. H., Blocker, M. M., Rohman, P. C., and McMinn, T. A. 1998. Registration of ‘Drew’ rice. Crop Sci. 30:747748.Google Scholar
Moldenhauer, K. A. K., Lee, F. N., Norman, R. J., Helms, R. S., Wells, B. R., Dilday, R. H., Rohman, P. C., and Marchetti, M. A. 1990. Registration of ‘Katy’ rice. Crop Sci. 30:747748.Google Scholar
Ottis, B. V., Smith, K. L., Scott, R. C., and Talbert, R. C. 2005. Rice yield and quality as affected by cultivar and red rice (Oryza sativa) density. Weed Sci. 53:499504.Google Scholar
Pérez De Vida, F. B., Laca, E., Mackill, D., Fernandez, G. M., and Fischer, A. 2006. Relating rice traits to weed competitiveness and yield: a path analysis. Weed Sci. 54:11221131.Google Scholar
Rutger, J. N. and Bryant, R. J. 2005. Registration of nine indica germplasms of rice. Crop Sci. 45:11701171.Google Scholar
Seal, A. N. and Pratley, J. E. 2010. The specificity of allelopathy in rice (Oryza sativa). Weed Res. 50:303311.Google Scholar
Tuong, T. P. 2000. Increasing water productivity and weed suppression of wet seeded rice: effect of water management and rice genotypes. Exp. Agric. 36:7189.Google Scholar
Yan, W. G. and McClung, A. M. 2010. ‘Rondo’, a long-grain indica rice with resistances to multiple diseases. J. Plant Reg. 4:131136.Google Scholar
Zhou, X., McClung, A. M., and Cammack, J. 2009. Evaluation of rice cultivars for resistance to foliar diseases under organic production conditions, 2009. Plant Dis. Manag. Rep. 4:FC054. DOI:10.1094/PDMR04.Google Scholar