Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T19:27:58.024Z Has data issue: false hasContentIssue false

Weed Management in Single- vs. Twin-Row Cotton (Gossypium hirsutum)

Published online by Cambridge University Press:  20 January 2017

Daniel O. Stephenson IV*
Affiliation:
West Florida Research and Education Center, Agronomy Department, Institute of Food and Agricultural Science, University of Florida, 5988 Highway 90, Building 4900, Milton, FL 32583
Barry J. Brecke
Affiliation:
West Florida Research and Education Center, Agronomy Department, Institute of Food and Agricultural Science, University of Florida, 5988 Highway 90, Building 4900, Milton, FL 32583
*
Corresponding author's E-mail: [email protected].

Abstract

Research was conducted to determine the effect of planting pattern, plant density, and levels of weed management intensity on intercepted photosynthetically active radiation (IPAR), weed control, and cotton lint yield in glyphosate-resistant cotton. Twin-row planting pattern canopy IPAR was 55% 7 wk after emergence (WAE) and 76% 9 WAE compared to 48% for single-row planting pattern 7 WAE and 59% 9 WAE. Regardless of cotton density, row spacing, or weed management intensity, control of browntop millet and Florida beggarweed was at least 88% 18 WAE. Benghal dayflower, sicklepod, and smallflower morningglory control was greater in twin-rows compared to single-rows at a cotton density of 7 plants m−2. Control of Benghal dayflower and sicklepod increased when cotton density increased at low weed management intensities; however, cotton density had no effect on weed control at higher levels of weed management input. At a cotton plant density of 7 plants m−2, twin-row cotton yielded 220 kg ha−1 more than the single-row planting pattern. Data indicates twin-row cotton production is feasible and that control of various weeds was better in twin-row than single-row pattern at lower cotton density and weed management intensity.

Se efectuó un estudio para determinar en algodón resistente a glifosato, los efectos del patrón y la densidad de siembra, los niveles de intensidad del manejo de maleza en la intercepción de la radiación fotosintéticamente activa (IPAR), el control de la maleza y el rendimiento de fibra de algodón. A 7 semanas después de la emergencia (WAE), la IPAR en el dosel del patrón de doble hilera fue de 55% y en sencilla 48%. A 9 WAE, la IPAR registrada en doble hilera y sencilla fue de 76% y 59%, respectivamente. Indistintamente de la densidad del algodón, el espacio entre hileras o la intensidad del manejo de maleza, el control de Urochloa ramosa y de Desmodium tortuosum fue cuando menos de 88%, a 18 WAE. El control de Commelina benghalensis, Senna obtusifolia y Jacquemontia tamnifolia fue mayor en doble hilera comparado con hilera sencilla, a una densidad del algodón de 7 plantas m−2. El control de Commelina benghalensis y de Jacquemontia tamnifolia se incrementó cuando la densidad del algodón fue mayor a baja intensidad en el manejo de la maleza; sin embargo, la densidad del algodón no tuvo efecto en el control, cuando los niveles de manejo de la maleza fueron más altos. A una densidad de 7 plantas m−2, el algodón sembrado a doble hilera tuvo un rendimiento de 220 kg ha−1 adicional, que en el patrón de siembra de una sola hilera. Los datos indican que la producción de algodón sembrado en doble hilera es factible y que el control de varias especies de maleza fue mejor en un sistema de doble hilera que en uno de simple, en los niveles más bajos de densidad del algodón y de intensidad en el manejo de la maleza.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bond, J. A., Walker, T. W., and Koger, C. H. 2009. Pendimethalin applications in stale seedbed rice production. Weed Technol 23:167170.CrossRefGoogle Scholar
Bond, J. A., Walker, T. W., Ottis, B. V., and Harrell, D. L. 2008. Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars. Agron. J. 100:393397.Google Scholar
Bond, J. A., Walker, T. W., Webster, E. P., Buehring, N. W., and Harrell, D. L. 2007. Rice cultivar response to penoxsulam. Weed Technol 21:961965.Google Scholar
Brecke, B. J. and Stephenson, D. O. IV. 2006. Weed management in single- vs. twin-row peanut (Arachis hypogaea). Weed Technol 20:368376.Google Scholar
Buchanan, G. A. 1992. Trend in weed control methods. Pages 4769. in McWhorter, C. G. and Abernathy, J. R. eds. Weeds of Cotton: Characterization and Control. Memphis, TN: The Cotton Foundation.Google Scholar
Buchanan, G. A. and Burns, E. R. 1970. Influence of weed competition on cotton. Weed Sci 18:149154.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences in combined analyses of experiments with two- or three-factor treatment designs. Agron. J. 81:655672.Google Scholar
Clewis, S. B. and Wilcut, J. W. 2007. Economic assessment of weed management in strip- and conventional-tillage nontransgenic and transgenic cotton. Weed Technol 21:4552.Google Scholar
Colvin, D. L., Wehtje, G. R., Patterson, M., and Walker, R. H. 1985. Weed management in minimum-tillage peanuts (Arachis hypogaea) as influenced by cultivar, row spacing, and herbicides. Weed Sci 33:233237.Google Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol 18:432436.Google Scholar
Dalley, C. D., Kells, J. J., and Renner, K. A. 2004. Effect of glyphosate timing and row spacing on corn (Zea mays) and soybean (Glycine max) yields. Weed Technol 18:165176.CrossRefGoogle Scholar
Edenfield, M. W., Brecke, B. J., Colvin, D. L., Dusky, J. A., and Shilling, D. G. 2005. Effect of glyphosate and MSMA application timing on weed control, fruiting patterns, and yield in glyphosate-resistant cotton. Weed Technol 19:224230.Google Scholar
Etheredge, L. M. Jr., Griffin, J. L., and Salassi, M. E. 2009. Efficacy and economics of summer fallow conventional and reduced-tillage programs for sugarcane. Weed Technol 23:274279.Google Scholar
Grichar, W. J., Colburn, A. E., and Kearney, N. S. 1994. Herbicides for reduced tillage in peanut (Arachis hypogaea) in the southwest. Weed Technol 8:212216.Google Scholar
Harder, D. B., Sprague, C. L., and Renner, K. A. 2007. Effect of soybean row width and population on weeds, crop yield, and economic return. Weed Technol 21:744752.Google Scholar
Heitholt, J. J., Pettigrew, W. T., and Meredith, W. R. 1992. Light interception and lint yield of narrow-row cotton. Crop Sci 32:728733.Google Scholar
Hock, S. M., Knezevic, S. Z., Martin, A. R., and Lindquist, J. L. 2006. Soybean row spacing and weed emergence time influence weed competitiveness and competitive indices. Weed Sci 54:3846.Google Scholar
Howe, O. W. III and Oliver, L. R. 1987. Influence of soybean (Glycine max) row spacing on pitted morningglory (Ipomoea lacunosa) interference. Weed Sci 35:185193.Google Scholar
Johnson, G. A., Hoverstad, T. R., and Greenwald, R. E. 1998. Integrated weed management using narrow corn row spacing, herbicide, and cultivation. Agron. J. 90:4046.CrossRefGoogle Scholar
Lanier, J. E., Jordan, D. L., Spears, J. F., Wells, R., Johnson, P. D., Barnes, J. S., Hurt, C. A., Brandenburg, R. L., and Bailey, J. E. 2004. Peanut response to planting pattern, row spacing, and irrigation. Agron. J. 96:10661072.Google Scholar
Leon, C. T., Webster, E. P., Bottoms, S. L., and Blouin, D. C. 2008. Water management and chemical control of red rice (Oryza punctata) in water-seeded imidazolinone-resistant rice. Weed Technol 22:132135.Google Scholar
Levy, R. J. Jr., Bond, J. A., Webster, E. P., Griffin, J. L., Zhang, W. P., and Linscombe, S. D. 2006. Imidazolinone-tolerant rice response to imazethapyr application. Weed Technol 20:389393.Google Scholar
Nelson, K. A. 2007. Glyphosate application timings in twin- and single-row corn and soybean spacings. Weed Technol 21:186190.Google Scholar
Norsworthy, J. K. and Grey, T. L. 2004. Addition of nonionic surfactant to glyphosate plus chlorimuron. Weed Technol 18:588593.Google Scholar
Rogers, N. K., Buchanan, G. A., and Johnson, W. C. 1976. Influence of row spacing on weed competition with cotton. Weed Sci 24:410413.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Pages 12431246. in. Proceedings of the 23rd SAS Users Group International. Cary, NC: SAS Institute.Google Scholar
Scroggs, D. M., Miller, D. K., Griffin, J. L., Steckel, L. E., Blouin, D. C., Stewart, A. M., and Vidrine, P. R. 2007. Reduced-input postemergence weed control with glyphosate and residual herbicides in second-generation glyphosate-resistant cotton. Weed Technol 21:9971001.Google Scholar
Steckel, L. E. and Sprague, C. L. 2004. Late-season common waterhemp (Amaranthus rudis) interference in narrow- and wide-row soybean. Weed Technol 947952.CrossRefGoogle Scholar
Walker, R. H., Patterson, M. G., Houser, E., Isenhour, D. J., Todd, J. W., and Buchanan, G. A. 1984. Effects of insecticide, weed-free period, and row spacing on soybean (Glycine max) and sicklepod (Cassia obtusifolia) growth. Weed Sci 32:702706.Google Scholar
Walker, T. W., Bond, J. A., Ottis, B. V., Gerard, P. D., and Harrell, D. L. 2008. Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agron. J. 100:381386.Google Scholar
Webster, E. P., Griffin, R. M., and Blouin, D. C. 2007. Herbicide programs for managing creeping rivergrass (Echinochloa polystachya) in rice. Weed Technol 21:785790.Google Scholar
Webster, T. M. 2005. Weed Survey—Southern States: Broadleaf Crops Subsection. [CD-ROM]. Lawrence, KS: Southern Weed Science Society.Google Scholar
Wilson, D. G., York, A. C., and Jordan, D. L. 2007. Effect of row spacing on weed management in glufosinate-resistant cotton. Weed Technol 21:489495.Google Scholar
Wright, D., Marois, J., and Rich, J. 2003. Cotton cultural practices and fertility management. http://edis.ifas.ufl.edu/AG200. Accessed: October 20, 2009.Google Scholar