Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T00:34:44.835Z Has data issue: false hasContentIssue false

Weed Management in Peanut (Arachis hypogaea) with Diclosulam Preemergence

Published online by Cambridge University Press:  12 June 2017

William A. Bailey
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
David L. Jordan
Affiliation:
Crop Science Department, Box 7620, North Carolina State University, Raleigh, NC 27695-7620
Charles W. Swann
Affiliation:
Tidewater Agricultural Experiment Station, Suffolk, VA 23437
Vernon B. Langston*
Affiliation:
Dow AgroSciences, Raleigh, NC 27616
*
Corresponding author: E-mail: [email protected].

Abstract

Field studies were conducted at five locations in North Carolina and Virginia in 1996 and 1997 to evaluate weed control and peanut (Arachis hypogaea) response to diclosulam that was applied preemergence (PRE) and in systems with commercial standards. All plots received a preplant incorporated (PPI) treatment of ethalfluralin at 840 g ai/ha. Diclosulam controlled common lambsquarters (Chenopodium album L.), eclipta (Eclipta prostrata L.), entireleaf morningglory (Ipomoea hederacea var. integriuscula Gray), ivyleaf morningglory [Ipomoea hederacea (L.) Jacq.], pitted morningglory (Ipomoea lacunosa L.), and prickly sida (Sida spinosa L.) as well as and frequently better than the commercial standards of acifluorfen plus bentazon applied postemergence (POST), paraquat plus bentazon early POST followed by (fb) imazapic POST, or imazapic POST. Systems with ethalfluralin PPI plus diclosulam PRE at 26 g ai/ha fb acifluorfen plus bentazon POST controlled a broader spectrum of weeds and yielded greater than systems of ethalfluralin PPI fb imazapic POST or ethalfluralin PPI fb acifluorfen plus bentazon POST. Peanut exhibited excellent tolerance to diclosulam PRE at 17, 26, or 35 g/ha.

Type
Research
Copyright
Copyright © 1999 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Altom, J. V. and Murray, D. S. 1996. Factors affecting eclipta (Eclipta prostrata) seed germination. Weed Technol. 10:727731.Google Scholar
Blum, R. R., Wilcut, J. W., and York, A. C. 1996 Frontier systems for weed management in North Carolina peanut Proc. South. Weed Sci. Soc. 49:16.Google Scholar
Cardina, J. and Swann, C. W. 1988. Metolachlor effects on peanut growth and development. Peanut Sci. 15:5760.Google Scholar
Dotray, P. A., Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1996. Palmer amaranth (Amaranthus palmeri) and devil's-claw (Probescidea louisianica) control in cotton (Gossypium hirsutum) with pyrithiobac. Weed Technol. 10:712.Google Scholar
Dowler, C. C. 1998. Weed Survey—Southern States. Proc. South. Weed Sci. Soc. 51:299313.Google Scholar
Grichar, W. J., Colburn, A. E., and Baumann, P. A. 1996. Yellow nutsedge (Cyperus esculentus) control in peanut (Arachis hypogaea) as influenced by method of metolachlor application. Weed Technol. 10:278281.Google Scholar
Jennings, K. M., York, A. C., Baits, R. B., and Culpepper, A. S. 1997. Sicklepod (Senna obtusifolia) and entireleaf morningglory (Ipomoea hederacea var. integriuscula) management in soybean (Glycine max) with flumetsulam. Weed Technol. 11:227–224.Google Scholar
Oliver, L. R., Gander, J. R., and Starke, R. J. 1997. Weed control programs with Firstrate (cloransulam). Proc. South. Weed Sci. Soc. 50:1617.Google Scholar
Richburg, J. S., Wilcut, J. W., Colvin, D. L., and Wiley, G. R. 1996. Weed management in southeastern peanut (Arachis hypogaea) with AC 263,222. Weed Technol. 10:145152.CrossRefGoogle Scholar
Wehtje, G., Wilcut, J. W., Hicks, T. V., and McGuire, J. 1988. Relative tolerance of peanuts to alachlor and metolachlor. Peanut Sci. 15:5356.Google Scholar
Wehtje, G. R., Wilcut, J. W., and McGuire, J. A. 1992. Influence of bentazon on the phytotoxicity of paraquat to peanuts (Arachis hypogaea) and associated weeds. Weed Sci. 40:9095.Google Scholar
Wilcut, J. W. 1991. Economic yield response of peanut (Arachis hypogaea) to postemergence herbicides. Weed Technol. 5:416420.CrossRefGoogle Scholar
Wilcut, J. W., Richburg, J. S. III, Wiley, G., and Walls, F. R. Jr. 1996. Postemergence AC 263,222 systems for weed control in peanut. Weed Sci. 44:104110.Google Scholar
Wilcut, J. W. and Swann, C. W. 1990. Timing of paraquat applications for weed control in Virginia-type peanuts (Arachis hypogaea). Weed Sci. 38:558562.Google Scholar
Wilcut, J. W., Walls, F. R. Jr., and Norton, D. N. 1991a. Imazethapyr for broadleaf weed control in peanuts (Arachis hypogaea). Peanut Sci. 18:2630.Google Scholar
Wilcut, J. W., Walls, F. R. Jr., and Norton, D. N. 1991b. Weed control, yield, and net returns using imazethapyr in peanuts (Arachis hypogaea). Weed Sci. 38:243248.Google Scholar
Wilcut, J. W., Wehtje, G. R., Cole, T. A., Hicks, T. V., and McGuire, J. A. 1989. Postemergence weed control systems for peanut (Arachis hypogaea). Weed Sci. 37:385391.Google Scholar
Wilcut, J. W., York, A. C., and Wehtje, G. R. 1994. The control and interaction of weeds in peanut (Arachis hypogaea). Rev. Weed Sci. 6:177205.Google Scholar