Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T06:00:24.517Z Has data issue: false hasContentIssue false

Weed Control Using an Enclosed Thermal Heating Apparatus

Published online by Cambridge University Press:  20 January 2017

Jared A. Hoyle*
Affiliation:
Department of Agronomy and Soils, Auburn University, 201 Funchess Hall, Auburn, AL 36849
J. Scott McElroy
Affiliation:
Department of Agronomy and Soils, Auburn University, 201 Funchess Hall, Auburn, AL 36849
J. Jack Rose
Affiliation:
Perennial Grass Breeding, Ceres. Inc. 3199 CR269 E., Somerville, TX 77879
*
Corresponding author's email: [email protected].

Abstract

Weed control by heat or flaming typically uses flames to burn small weeds, directed away from desired crops. This research studied an enclosed flaming system for weed control before turfgrass establishment. Field research trials were conducted to explore the efficacy of a PL-8750 flame sanitizer at two application timings. Treatments included various application methods of PL-8750 flame sanitizer and common thermal and chemical weed control methods. Data were weed control relative to the control treatment. Species evaluated included carpetweed, Virginia buttonweed, spotted spurge, large crabgrass, goosegrass, old world diamond-flower, cocks-comb kyllinga, and yellow nutsedge. Turfgrass establishment was not successful in summer but was successful in fall. Fall-application timing trials resulted in > 60% tall fescue establishment at 6 wk after seeding (WAS) for all treatments. Summer-application timing trials resulted in unacceptable turfgrass establishment (≤ 18%) for all evaluated turfgrass species at 6 WAS. Broadleaf and grassy weeds were better controlled compared with sedge weeds. Overall, solarization; covered, emerged-weed flaming; and double applications of covered, emerged-weed flaming were the most successful treatments. Solarization controlled carpetweed, Virginia buttonweed, spotted spurge, large crabgrass, and goosegrass > 80% at 6 WAS. Weed control across thermal treatments were equal to or greater than the comparison chemical treatment (dazomet at 389 kg ha−1). Results indicate thermal weed control has potential for reducing weed populations before turfgrass establishment.

El control de malezas por calor o llamas usa típicamente llamas para quemar malezas pequeñas al tiempo que se evita el cultivo deseado. Esta investigación estudió un sistema cubierto de llamas para el control de malezas antes del establecimiento del césped. Se realizaron estudios de campo para explorar la eficacia de un desinfectante de llama PL-8750 en dos momentos de aplicación. Los tratamientos incluyeron varios métodos de aplicación del desinfectante de llama PL-8750 y métodos comunes de control de malezas térmico y químico. Los datos fueron control de malezas relativo al tratamiento testigo. Las especies evaluadas incluyeron Mollugo verticillata, Diodia virginiana, Chamaesyce maculata, Digitaria sanguinalis, Eleusine indica, Oldenlandia corymbosa, Kyllinga squamulata y Cyperus esculentus. El establecimiento del césped no fue exitoso en el verano, pero sí lo fue en el otoño. Los estudios de momento de aplicación en el otoño resultaron en un establecimiento >60% de Lolium arundinaceum a 6 semanas después de la siembra (WAS) para todos los tratamientos. Los estudios de momento de aplicación en el verano resultaron en un establecimiento inaceptable del césped (≤18%) para todas las especies de césped evaluadas a 6 WAS. Las malezas de hoja ancha y zacates fueron controladas mejor en comparación con las malezas ciperáceas. En general, solarización; suelo cubierto, control con llamas en malezas emergidas; y aplicaciones dobles de suelo cubierto, control con llamas en malezas emergidas fueron los tratamientos más exitosos. La solarización controló M. verticillata, D. virginiana, C. maculata, D. sanguinalis y E. indica >80% a 6 WAS. El control de malezas térmico fue igual o mayor en comparación con el tratamiento químico (cazonete a 389 kg ha−1). Los resultados indican que el control térmico de malezas tiene potencial para reducir poblaciones de malezas antes del establecimiento del césped.

Type
Weed Management—Other Crops/AREAS
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu-Irmaileh, B. E. 1991. Weed control in squash and tomato fields by soil solarization in the Jordan Valley. Weed Res. 31 :125133.CrossRefGoogle Scholar
Al-Masson, A. A., Saghir, A.-R., and Itani, S. 1993. Soil solarization for weed management. Weed Technol. 7 :507510.CrossRefGoogle Scholar
Andreasen, C., Hansen, L., and Streibig, J. C. 1999. The effect of ultraviolet radiation on the fresh weight of some weeds and crops. Weed Technol. 13 :554560.CrossRefGoogle Scholar
Anonymous. 1999. Something for strawberry growers to get steamed up about. Fruit Grower. April :1112.Google Scholar
Ascard, J. 1994. Dose–response models for flame weeding in relation to plant size and density. Weed Res. 34 :377385.CrossRefGoogle Scholar
Ascard, J. 1995. Effects of flame weeding on weed species at different development stages. Weed Res. 34 :397–385.Google Scholar
Ascard, J. 1997. Flame weeding: effects of fuel pressure and tandem burners. Weed Res. 37 :7786.CrossRefGoogle Scholar
Ascard, J. 1998. Comparison of flaming and infrared radiation techniques for thermal weed control. Weed Res. 38 :6976.Google Scholar
Ascard, J., Hatcher, P. E., Melander, B., and Upadhyaya, M. K. 2007. 10 Thermal Weed Control. Pages 155175 in Upadhyaya, M.K. Blackshaw, R. E., eds. Non-Chemical Weed Management: Principles, Concepts and Technology. Wallingford, UK : CAB International.CrossRefGoogle Scholar
Barberi, P., Moonen, A. C., Peruzzi, A., Fontanelli, M., and Raffaelli, M. 2009. Weed suppression by soil steaming in combination with activating compounds. Weed Res. 49 :5566.CrossRefGoogle Scholar
Bell, C. E., Elmore, C. L., and Durazo, A. III. 1988. Soil solarization for weed management in vegetable. Pages 475479 in Allen, P. and Van Dusen, D., eds. Proceedings of the 6th International Conference of the International Federation of Organic Agriculture Movements. Bonn, Germany : IFOAM.Google Scholar
Bell, C. E. and Laemmlen, F. F. 1991. Weed control by solarization. Chapter 18. in Kattan, J. and DeVay, J. E., eds. Soil Solarization. Boca Raton : CRC Press.Google Scholar
Benvenuti, S., Macchia, M., and Miele, S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing planting depth. Weed Sci. 49 :528535.CrossRefGoogle Scholar
Bertram, A. and Meyer, J. 1996. Optimization of thermal weed control. Z. Pflanzenkr. Pflanzenschutz 15 :407416. [In German]Google Scholar
Bond, W., Davies, G., and Turner, R. J. 2007. A review of thermal weed control. Technical Report. HDRA. Coventry, UK: Ryton Organic Gardens.Google Scholar
Bond, W. and Grundy, A. C. 2001. Non-chemical weed management in organic farming systems. Weed Res. 41 :383405.CrossRefGoogle Scholar
Bowers, S. A. and Hanks, R. J. 1962. Specific heat capacity of soils and minerals as determined with a radiation calorimeter. Soil Sci. 94 :392396.Google Scholar
Cisneros, J. J. and Zandstra, B. H. 2008. Flame weeding effects on several weed species. Weed Technol. 22 :290295.Google Scholar
Couch, R. and Gangstad, E. O. 1974. Response of water hyacinth to laser radiation. Weed Sci. 22 :450453.Google Scholar
Dahlquist, R. M., Prather, T. S., and Stapleton, J. J. 2007. Time and temperature requirements for weed seed thermal death. Weed Sci. 55 :619625.Google Scholar
Desjardins, Y., Tardif, M., Gill, J., and Lagüe, C. 1997. Poa annua war calls for scorched-earth policy. Golf Course Manag. 65 :4954.Google Scholar
Diprose, M. F., Benson, F. A., and Willis, A. J. 1984. The effect of externally applied electrostatic fields, microwave radiation and electric currents on plants and other organisms with special reference to weed control. Bot. Rev. 50 :171223.Google Scholar
Egley, G. H. 1983. Weed seed and seedling reduction by soil solarization with transparent polyethylene sheets. Weed Sci. 31 :404409.Google Scholar
Egley, G. H. 1990. High-temperature effects on germination and survival of weed seeds in soil. Weed Sci. 38 :429435.Google Scholar
Elmore, C. L. 1983. Solarization for weed control in vegetable crops. Abstr. Weed Sci. Soc. Am. 23 :32.Google Scholar
Elmore, C. L. 1991. Weed control by solarization. Chapter 5 in Katan, J. and DeVay, J. E., eds. Soil Solarization. Boca Raton, FL : CRC Press.Google Scholar
Froud-Williams, R. J., Chancellor, R. J., and Drennan, D. S. H. 1984. The effects of seed burial and soil disturbance on emergence and survival of arable weeds in relation to minimal cultivation. J. Appl. Ecol. 21 :629641.CrossRefGoogle Scholar
Hatcher, P. E. and Melander, B. 2003. Combining physical, cultural and biological methods: prospects for integrated non-chemical weed management strategies. Weed Res. 43 :303322.Google Scholar
Heiniger, R. W. 1999. Controlling weeds in organic crops with flame weeders. Santa Cruz, CA : Organic Farming Research Foundation, Information Bulletin 6. Pp. 1719.Google Scholar
Heisel, T., Schou, J., Andreasen, C., and Christensen, S. 2002. Using laser to measure stem thickness and cut weed stems. Weed Res. 42 :242248.Google Scholar
Hopkins, C. Y. 1936. Thermal death point of certain weed seeds. Can J. Res. 14 :178183.Google Scholar
Horowitz, M. 1980. Weed research in Israel. Weed Sci. 28 :457460.Google Scholar
Horowitz, M., Regev, Y., and Herzlinger, G. 1983. Solarization for weed control. Weed Sci. 31 :170179.Google Scholar
Katan, J., Greenberger, A., Alon, H., and Grinstein, A. 1976. Solar heating by polyethylene mulching for the control of diseases caused by soil-borne pathogens. Phytopathology 76 :683688.CrossRefGoogle Scholar
Lague, C., Gill, J., and Peloquin, G. 2001. Thermal control in plant protection. Pages 3546 in Vincet, C., Panneton, B., and Fleurant-Lessard, F., eds. Physical Control Methods in Plant Protection. Berlin, Germany : Springer-Verlag.Google Scholar
Lang, C. 1878. Über Wärmekapazität der Bodenkonstituieren. Fortschr. Geb. Agric. Phys. 1 :109147.Google Scholar
Mathiassen, S. K., Bak, T., Christensen, S., and Kudsk, P. 2006. The effect of laser treatment as a weed control method. Biosys. Eng. 95 :497505.Google Scholar
McSorley, R., Wang, K. H. E., Rosskopf, N., Kokalis-Burelle, N. H. N., Petersen, Hans, Grill, H. K., and Krueger, R. 2009. Nonfumigant alternatives to methyl bromide for management of nematodes, soil-borne disease, and weeds in production of snapdragon (Antirrhinum majus). Int. J. Pest. Manag. 55 :265273.Google Scholar
Melander, B. and Rasmussen, G. 2001. Effects of cultural methods and physical weed control on intrarow weed numbers, manual weeding and marketable yield in direct-sown leek and bulb onion. Weed Res. 41 :491508.CrossRefGoogle Scholar
Morelle, B. 1993. Thermal weed control and its applications in agriculture and horticulture. Pages 111116 in Communications of the 4th International Conference International Federation of Organic Agriculture Movements—Nonchemical Weed Control; Dijon, France. Bonn, Germany : IFOAM.Google Scholar
Ochsner, T. E., Horton, R., and Ren, T. 2001. Simultaneous water content, air-filled porosity, and bulk density measurements with thermal-time domain reflectometry. Soil Sci. Am. J. 65 :16181622.Google Scholar
Parish, S. 1990. A review of non-chemical weed control techniques. Biol. Agric. Hortic. 7 :117137.Google Scholar
Patten, H. E. 1909. Heat Transfer in Soils. Washington, DC. U.S. Department of Agriculture. Bureau of Soils Bulletin 59.Google Scholar
Peachey, R. E., Pinkerton, J. N., Ivors, K. L., Miller, M. L., and Moore, L. W. 2001. Effect of soil solarization, cover crops, and metham on field emergence and survival of buried annual bluegrass (Poa annua) seeds. Weed Technol. 15 :8188.Google Scholar
Pelletier, Y., McLeod, C. D., and Bernard, G. 1995. Description of sub-lethal injuries caused to Colorado potato beetle by propane flamer treatment. J. Econ. Entomol. 88 :12031205.Google Scholar
Rahkonen, J. and Jokela, H. 2003. Infrared radiometry for measuring plant leaf temperature during thermal weed control treatment. Biosys. Eng. 86 :257266.Google Scholar
Rifai, M. N., Lacko-Bartosova, M., and Puskarova, V. 1996. Weed control for organic vegetable farming. Rostl. Vyroba 42 :463466.Google Scholar
Rosskopf, E. N., Kokalis-Burelle, N., Butler, D., and Fennimore, S. 2010. Evaluation of stem for nematode and weed control in cut flower production in Florida. Pages 83-1–83-3 in Proceedings of the Annual International Research Conference on Methyl bromide Alternatives and Emissions Reductions; Orlando, FL. Fresno, CA : Methyl Bromide Alternatives Outreach.Google Scholar
Rubin, B. and Benjamin, A. 1983. Solar-heating the soil: effect on weed control and on soil incorporated herbicides. Weed Sci. 31 :819825.Google Scholar
Rubin, B. and Benjamin, A. 1984. Solar heating of the soil: involvement of environmental factors in the weed control process. Weed Sci. 32 :138142.Google Scholar
Sivesind, E. C., Leblac, M. L., Cloutier, D. C., Seguin, P., and Stewart, K. A. 2009. Weed response to flame weeding at different development stages. Weed Technol. 23 :438443.Google Scholar
Smith, W. O. 1942. The thermal conductivity of dry soil. Soil Sci. 53 :435450.Google Scholar
Standifer, L. C., Wilson, P. W., and Poorche-Sorbet, R. 1984. Effects of solarization on soil weed seed populations. Weed Sci. 32 :569573.Google Scholar
Stapleton, J. J. and DeVay, J. E. 1986. Soil solarization: a non-chemical approach for management of plant pathogens and pests. Crop Prot. 5 :190198.Google Scholar
Suss, A. and Bacthaler, G. 1968. Preliminary experiments on γ-irradiation of weed seeds. Pages 2024 in Proceedings of the 9th British Weed Control Conference; Brighton, UK. Alton, UK : British Crop Production Council.Google Scholar
Trotter, K. 1991. Sidlesham steamers. Grower Nexus Hortic. 116 :2425.Google Scholar
Turgeon, A. J. 2002. Turfgrass Management. 6th ed. Englewood Cliffs, NJ : Prentice Hall. Pp. 100101.Google Scholar
Ulrich, R. 1894. Untersuchungen Fiber die Wärmekapazität der Bodenkonstituieren. Fortschr. Geb. Agric. Phys. 17 :131.Google Scholar
Unruh, J. B., Brecke, B. J., Dusky, J. A., and Godbehere, J. S. 2002. Fumigant alternatives for methyl bromide prior to turfgrass establishment. Weed Technol. 16 :379387.Google Scholar
Van Duin, R.H.A. 1963. The Influence of Soil Management on the Temperature Wave Near the Surface. Wageningen, The Netherlands: Institute for Land and Water Management Research Technical Bulletin 29.Google Scholar
Van Rooyen, M. and Winkerton, H. F. 1959. Structural and textural influences on thermal conductivity of soils. Highway Res. Bd. Proc. 38 :576621.Google Scholar
Vigneault, C. and Benoit, D. L., McLaughlin, N. B. 1990. Energy aspects of weed electrocution. Reviews of Weed Sci. 5 :1526.Google Scholar