Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T02:03:52.192Z Has data issue: false hasContentIssue false

Weed Control, Environmental Impact, and Economics of Weed Management Strategies in Glyphosate-Resistant Soybean

Published online by Cambridge University Press:  20 January 2017

Christie L. Stewart
Affiliation:
Environmental Science Program, University of Western Ontario, London, ON N6A 3K7, Canada
Robert E. Nurse*
Affiliation:
Agriculture and Agri-Food Canada, 2585 County Rd. 20 R.R. #2 Harrow, ON N0R 1G0, Canada
Laura L. Van Eerd
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Richard J. Vyn
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
Peter H. Sikkema
Affiliation:
Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, ON N0P 2C0, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

With the number of glyphosate-resistant weed species increasing in North America and a lack of new herbicide chemistries being developed, growers are shifting toward using older herbicides that are more expensive and may be less environmentally friendly. Therefore, to determine which weed management strategies are most cost effective and have the lowest impact on the environment we evaluated the efficacy, environmental impact, and the profitability of several weed management strategies in glyphosate-resistant soybean over a 3-yr period (2007 to 2009) at three locations in southwestern Ontario, Canada. No visible injury to soybean was observed with the herbicide treatments evaluated. A sequential application of glyphosate consistently provided high levels of weed control (99 to 100%) at 56 d after treatment in comparison with one- or two-pass herbicide programs. Soybean yield did not differ between the two-pass herbicide programs and glyphosate applied early POST; however, a yield benefit was found with a sequential application of glyphosate or a PRE herbicide followed by glyphosate compared with glyphosate applied only at late POST. The two-pass herbicide programs had higher environmental impact (EI) (> 23) than the one-pass herbicide programs (< 15), except when imazethapyr was followed by or tank-mixed with glyphosate, which had an equivalent EI (∼ 14) to the one-pass herbicide programs. Not surprisingly because of the low purchase price of glyphosate, gross margins were highest for treatments that included glyphosate. However, to reduce the selection pressure on glyphosate-resistant weed biotypes, to reduce environmental impact, and to increase gross margins a combination of glyphosate with another mode of action would be most beneficial. In this study glyphosate + imazethapyr was the best alternative to a sequential two-pass glyphosate program.

Con el incremento del número de especies de maleza resistentes a glifosato en Norte América y la falta de desarrollo de nuevos herbicidas químicos, los agricultores tienden hacia el uso de herbicidas más antiguos, que son más caros y pueden ser menos amigables al ambiente. Por lo tanto, para determinar cuáles estrategias de manejo de maleza son las más efectivas en costo y tienen el impacto ambiental más bajo, evaluamos la eficacia, el impacto ambiental y la rentabilidad de varias estrategias de manejo en el cultivo de soya resistente al glifosato, por un período de tres años (2007 a 2009) en tres sitios en el suroeste de Ontario, Canadá. No se observó daño visible a la soya con los tratamientos de herbicida evaluados. Una aplicación secuencial de glifosato, consistentemente proporcionó altos niveles de control de maleza (99 a 100%) 56 días después del tratamiento (DAT) en comparación a los programas de herbicida de una o dos pasadas. El rendimiento de soya no difirió entre los programas de herbicidas de dos pasadas y el glifosato aplicado en postemergencia temprana (EPOST); sin embargo, se observó un beneficio en el rendimiento con una aplicación secuencial de glifosato o un herbicida preemergente (PRE) seguido de glifosato, comparado con glifosato aplicado únicamente en postemergencia tardía (LPOST). Los programas de herbicida de dos pasadas tuvieron mayor impacto ambiental (EI) (>23) que los programas de aplicación de una pasada (<15), excepto cuando imazethapyr fue seguido por o mezclado con glifosato, el cual tuvo un EI (∼14) equivalente a los programas de herbicida de una pasada. Debido al bajo precio de compra de glifosato, no es sorprendente que las utilidades brutas fueron las más altas para tratamientos que incluyeron este herbicida. Sin embargo, para reducir la presión selectiva sobre los biotipos de maleza resistentes al glifosato, disminuir el impacto ambiental e incrementar las utilidades brutas, sería benéfico utilizar una combinación de glifosato y herbicidas con otro modo de acción. En este estudio, glifosato + imazethapyr fue la mejor alternativa a un programa secuencial de dos pasadas de glifosato.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, J. W. and Oliver, L. R. 2004. Cloransulam antagonizes annual grass control with aryloxyphenoxypropionate graminicides but not cyclohexanediones. Weed Technol. 18:763772.Google Scholar
Beckie, H. J. and Reboud, X. 2009. Selecting for weed resistance: herbicide rotation and mixture. Weed Technol. 23:363370.Google Scholar
Bradley, P. R., Johnson, W. G., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Economics of weed management in glufosinate-resistant corn (Zea mays L.). Weed Technol. 14:495501.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18:443453.Google Scholar
Corrigan, K. A. and Harvey, R. G. 2000. Glyphosate with and without residual herbicides in no-till glyphosate-resistant soybean (Glycine max). Weed Technol. 14:569577.Google Scholar
Duke, S. O. 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61:211218.Google Scholar
Ellis, J. M. and Griffin, J. L. 2002. Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol. 16:541547.Google Scholar
Ferrell, J. A. and Witt, W. W. 2002. Comparison of glyphosate with other herbicides for weed control in corn (Zea mays): efficacy and economics. Weed Technol. 16:701706.Google Scholar
Gallivan, G. J., Surgeoner, G. A., and Kovach, J. 2001. Pesticide risk reduction on crops in the province of Ontario. J. Environ. Qual. 30:798813.Google Scholar
Gianessi, L. P. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 61:241245.Google Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:354360.Google Scholar
Gower, S. A., Loux, M. M., Cardina, J., and Harrison, S. K. 2002. Effect of planting date, residual herbicide, and postemergence application timing on weed control and grain yield in glyphosate-tolerant corn (Zea mays). Weed Technol. 16:488494.Google Scholar
Hartzler, B. 1996. Is one-pass weed control a realistic goal. Department of Agronomy, Iowa State University Extension Agronomy. 3 p. Accessed: June 18, 2010.Google Scholar
Hartzler, R. G., Singer, J. W., Kohler, K. A., and Buhler, D. D. 2006. Effect of repeated glyphosate use on weed communities in a soybean–corn rotation. Online. Crop Manag. DOI:10.1094/CM-2006-0308-01-RS.Google Scholar
Heap, I. 2009. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: June 14, 2010.Google Scholar
Johnson, W. G., Bradley, P. R., Hart, S. E., Buesinger, M. L., and Massey, R. E. 2000. Efficacy and economics of weed management in glyphosate-resistant corn (Zea mays). Weed Technol. 14:5765.Google Scholar
Kovach, J., Petzoldt, C., Degni, J., and Tette, J. 1992. A method to measure the environmental impact of pesticides. N.Y. Food Life Sci. Bull. 139:139146.Google Scholar
Loux, M. M., Dobbels, A. F., Johnson, W. G., Nice, G. R. W., Bauman, T. T., and Stachler, J. M. 2008. Weed control guide for Ohio and Indiana. Ohio State University Extension Bulletin 789/Purdue Extension Pub. No. WS16. 201 p.Google Scholar
Nurse, R. E., Hamill, A. S., Swanton, C. J., Tardif, F. J., Deen, W., and Sikkema, P. H. 2007. Is the application of a residual herbicide required prior to glyphosate application in no-till glyphosate-tolerant soybean (Glycine max)? Crop Prot. 26:484489.Google Scholar
Nurse, R. E., Swanton, C. J., Tardif, F. J., and Sikkema, P. H. 2006. Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Prot. 25:11741179.Google Scholar
[OMAFRA] Ontario Ministry of Agriculture, Food and Rural Affairs. 2008. Guide to Weed Control, Publication 75. Toronto, ON. 379 p.Google Scholar
Payne, S. A. and Oliver, L. R. 2000. Weed control programs in drilled glyphosate-resistant soybean. Weed Technol. 14:413422.Google Scholar
Sikkema, P. H., Van Eerd, L. L., Vyn, R., and Weaver, S. E. 2007. A comparison of reduced rate and economic threshold approaches to weed management in a corn–soybean rotation. Weed Technol. 21:647655.Google Scholar
Soltani, N., Van Eerd, L. L., Vyn, R. J., Shropshire, C., and Sikkema, P. H. 2007. Weed control, environmental impact and profitability of reduced rates of imazethapyr in combination with dimethenamid in dry beans. Can. J. Plant Sci. 87:671678.Google Scholar
Soltani, N., Van Eerd, L. L., Vyn, R. J., Shropshire, C., and Sikkema, P. H. 2010. Weed control, environmental impact and profitability with glyphosate tankmixes in glyphosate-resistant corn. Can. J. Plant Sci. 90:18.Google Scholar
Steckel, L. E., Sprague, C. L., and Hager, A. G. 2002. Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol. 16:755761.Google Scholar
Stewart, C. L., Nurse, R. E., Hamill, A. S., and Sikkema, P. H. 2010. Environment and soil conditions influence pre- and postemergence herbicide efficacy in soybean. Weed Technol. 24:234243.Google Scholar
Swanton, C. J., Shrestha, A., Chandler, K., and Deen, W. 2000. An economic assessment of weed control strategies in no-till glyphosate-resistant soybean (Glycine max). Weed Technol. 14:755763.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20:301307.Google Scholar