Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T13:03:21.323Z Has data issue: false hasContentIssue false

Vinasse and Biochar Effects on Germination and Growth of Palmer Amaranth (Amaranthus palmeri), Sicklepod (Senna obtusifolia), and Southern Crabgrass (Digitaria ciliaris)

Published online by Cambridge University Press:  20 January 2017

Neeta Soni
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Ramon G. Leon*
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
John E. Erickson
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Jason A. Ferrell
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Maria L. Silveira
Affiliation:
Range Cattle Research and Education Center, University of Florida, Ona, FL 33865
Mihai C. Giurcanu
Affiliation:
Department of Statistics, University of Florida, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected].

Abstract

Vinasse and biochar are by-products of biofuel production that can be used as sources of nutrients to crops or soil amendments to improve soil quality. Despite the recent interest in biochar and vinasse effects on soil properties, little is known about their effect on weed communities. We hypothesized that the addition of biochar and vinasse to the soil could affect weed seed germination and growth, and that different weed species would show different responses to these soil amendments. Therefore, the objectives of this study were to determine the effects of vinasse and biochar on the germination and growth of Palmer amaranth, sicklepod, and southern crabgrass. The study was conducted under laboratory and growth chamber conditions. Treatments consisted of four levels of vinasse (0, 10, 20, and 40 L m−2) and biochar (0, 0.5, 2.5, and 12.5 kg m−2) applied to a sandy loam soil. Biochar at 0.5 and 2.5 kg m−2 increased germination of Palmer amaranth but had no effect on sicklepod and southern crabgrass. Vinasse reduced germination of all species. However, sicklepod germination was less affected by vinasse at 10 and 20 L m−2 than the other two species. Vinasse at 40 L m−2 decreased Palmer amaranth, southern crabgrass and sicklepod germination 57, 26 and 87%, respectively. Biochar had no consistent effect on the vegetative growth of the species studied. Vinasse at 10 L m−2 stimulated growth of sicklepod and southern crabgrass compared to the nontreated control. Our results suggested that vinasse used as a soil amendment could affect weed community structure by decreasing germination of susceptible species, but plants and weed species that can get established in vinasse amended soils might show higher growth rates.

La vinaza y el biochar son subproductos de la producción de biocombustibles que pueden ser utilizados como fuentes de nutrientes para cultivos o como enmiendas para mejorar la calidad del suelo. A pesar del reciente interés en los efectos del biochar y la vinaza sobre las propiedades del suelo, es poca la información disponible sobre su efecto en las comunidades de malezas. Planteamos la hipótesis de que la adición de biochar o vinaza al suelo podría afectar la germinación y el crecimiento de malezas, y que la respuesta a estas enmiendas puede ser distinta dependiendo de la especie de malezas. Por lo tanto, los objetivos de este estudio fueron determinar los efectos de la vinaza y el biochar en la germinación y crecimiento de Amaranthus palmeri, Senna obtusifolia y Digitaria ciliaris. El estudio fue realizado en condiciones de laboratorio y cámara de crecimiento. Los tratamientos consistieron en cuatro niveles de vinaza (0, 10, 20, and 40 L m−2) y biochar (0, 0.5, 2.5, and 12.5 kg m−2) aplicados a un suelo franco arenoso. Biochar a 0.5 y 2.5 kg m−2 incrementó la germinación de A. palmeri, pero no tuvo efecto en S. obtusifolia ni en D. ciliaris. La vinaza redujo la germinación de todas las especies. Sin embargo, la germinación de S. obtusifolia fue menos afectada que las otras dos especies cuando se usó vinaza a 10 y 20 L m−2. Vinaza a 40 L m−2 redujo la germinación de A. palmeri, D. ciliaris and S. obtusifolia en 57, 26 and 87%, respectivamente. Biochar no tuvo un efecto consistente sobre el crecimiento vegetativo de las especies estudiadas. Vinaza a 10 L m−2 estimuló el crecimiento de S. obtusifolia and D. ciliaris al comparase con el testigo no-tratado. Nuestros resultados sugieren que el uso de vinaza como enmienda para el suelo podría afectar la estructura de las comunidades de malezas al disminuir la germinación de especies susceptibles de malezas. Sin embargo, las malezas que logren establecerse en suelo enmendado con vinaza podrían mostrar mayores tasas de crecimiento.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, MM, Benjamin, TJ, Emery, NC, Brounder, SJ, Gibson, KD (2013) The effect of biochar on native and invasive prairie plant species. Invasive Plant Sci Manag 6:197207 CrossRefGoogle Scholar
Algur, O, Kadioglu, A (1992) The effect of vinasse on the growth, biomass and primary productivity in pea (Pisum sativum) and sunflower (Helianthuns annuus). Agric Ecosyst Environ 39:139144 CrossRefGoogle Scholar
Azania, AAPM, Marques, MO, Pavani, MCMD, Azania, CAM (2003) Germination of Sida rhombifolia and Brachiaria decumbes seed influenced by vinasse, flegmass and fuel oil. Planta Daninha 21:443449 CrossRefGoogle Scholar
Booth, RJ, Lightfoot, CJ (1990) The reticulation of ethanol stillage through irrigation systems and its use for fertilisation of sugarcane in Zimbabwe. Agric Water Manage 17:4958 CrossRefGoogle Scholar
Chauan, BS, Johnson, DE (2008) Germination ecology of southern crabgrass (Digitaria ciliaris) and India crabgrass (Digitaria longifolia): two important weeds of rice in tropics. Weed Sci 56:722728 CrossRefGoogle Scholar
Christoffoleti, PJ, Bacchi, OOS (1985) Effects of vinasse application on the population and chemical control of weeds in the sugarcane. Planta Daninha 9:6070 CrossRefGoogle Scholar
Creel, JM, Hoveland, CS, Buchanan, GA (1968) Germination, growth and ecology of sicklepod. Weed Sci 16:396400 CrossRefGoogle Scholar
Deenik, JL, Mc Clellan, T, Uehara, G, Antal, MJ, Campbell, S (2010) Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Sci Soc Am J 74:12591270 CrossRefGoogle Scholar
Erickson, JE, Helsel, ZR, Woodard, KR, Vendramini, JMB, Wang, Y, Sollenberger, LE, Gilbert, RA (2011) Planting date affects biomass and brix of sweet sorghum grown for biofuel across Florida. Agron J 103:18271833 CrossRefGoogle Scholar
Kadioglu, A, Algur, OF (1990) The effect of vinasse on the growth of Helianthuns annuus and Pisum sativum: Part I-The effects on some enzymes and chlorophyll and protein content. Environ Pollut 67:223232 CrossRefGoogle ScholarPubMed
Lehmann, J (2007) Bio-energy in the black. Front Ecol Env 5:381387 CrossRefGoogle Scholar
Lehmann, J, Joseph, S, eds (2009) Biochar for environmental management: an introduction. Biochar for environmental management: science and technology. Pages 112 in Lehmann, J, Joseph, S, eds. Earthscan. London Google Scholar
Mohan, D, Pittman, CU, Steele, PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energ Fuel 20:848889 CrossRefGoogle Scholar
Miyamoto, T, Kameyama, K, Nakajima, T (2012) Reduction in saturated and unsaturated hydraulic conductivities of an andisol by vinasse application. Soil Sci Soc Am J 77:17 Google Scholar
Murillo, JM, Cabrera, F, Lopez, R (1993) Effect of beet vinasse on germination and seedling performance of ryegrass (Lolium multiflorum Lam cv Barwoltra). J Sci Food Agric 61:155160 CrossRefGoogle Scholar
Ramos, NP, Soares, MC, Gonçalves, MR, Lago, AA (2009) Sunflower emergence and initial plant growth under sugarcane residues. Cienc Rural 39:4551 CrossRefGoogle Scholar
Ramos, NP, Soares, MC, Gonçalves, MR, Lago, AA, Calderari, G (2008) Oilseed crops initial development as influenced by sugarcane vinasse soil application. Bragantia 67:685692 CrossRefGoogle Scholar
Rogovska, N, Laird, D, Cruse, S, Trabue, S, Heaton, E (2012) Germination test for a assessing biochar quality. J Environ Qual 41:10141022 CrossRefGoogle ScholarPubMed
Runia, WT (2000) Steaming methods for soils and substrates. Pages 115124 in Proceedings of the 532 International Symposium on Chemical and Non-Chemical Soil and Substrate Disinfestation on International Society for Horticultural Science CrossRefGoogle Scholar
Sawma, JT, Mohler, CL (2002) Evaluating seed viability by an unimbibed seed crush test in comparison with the tetrazolium test. Weed Technol 16:781786 CrossRefGoogle Scholar
Sheehan, GJ, Greenfield, PF (1980) Utilization, treatment and disposal of distillery wastewater. Water Res 14:257277 CrossRefGoogle Scholar
Solaiman, ZM, Murphy, DV, Abbott, LK (2011) Biochars influence seed germination and early growth seedlings. Plant Soil 353:273287 CrossRefGoogle Scholar
Steckel, LS, Sprague, CL, Stoller, EW, Wax, LM (2004) Temperature effects on germination of nine Amaranthus species. Weed Sci 52:217221 CrossRefGoogle Scholar
Trevors, JT (1996) Sterilization and inhibition of microbial activity in soil. J. Microbiol Methods 26:5359 CrossRefGoogle Scholar
U.S. DOE (2009) Biomass: multi-year program plan US Department of Energy Office of Energy Efficiency and Renewable Energy. Online at http://www1.eere.energy.gov/bioenergy/pdfs/mypp_april_2011.pdf Google Scholar
Van Zwieten, L, Kimber, S, Morris, S, Chan, KY, Downie, A, Rust, J, Joseph, S, Cowie, A (2010) Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 327:235246 CrossRefGoogle Scholar
Wilkie, AC, Riedesel, KJ, Owens, JM (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstock. Biomass Bioenerg 19–2:63102 CrossRefGoogle Scholar