Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T02:17:19.608Z Has data issue: false hasContentIssue false

Trinexapac-Ethyl Influences Bispyribac-Sodium Absorption and Efficacy for Annual Bluegrass (Poa annua) Control in Creeping Bentgrass (Agrostis stolonifera)

Published online by Cambridge University Press:  20 January 2017

Patrick E. McCullough*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223-1797
Stephen E. Hart
Affiliation:
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520
*
Corresponding author's E-mail: [email protected].

Abstract

Bispyribac-sodium selectively controls annual bluegrass in cool-season turf but efficacy may be influenced by management practices, such as plant growth regulator use. Experiments were conducted in New Jersey to investigate efficacy and absorption of bispyribac-sodium applied with trinexapac-ethyl for annual bluegrass control and turfgrass tolerance. In laboratory experiments with annual bluegrass, creeping bentgrass, and perennial ryegrass, tank-mixing trinexapac-ethyl with 14C-bispyribac-sodium increased presumed foliar absorption of 14C-bispyribac-sodium compared with nontrinexapac-ethyl treated; absorption increased with trinexapac-ethyl rate. Differences in 14C-bispyribac-sodium absorption were not detected among emulsifiable concentration, microencapsulated concentration, and wettable powder trinexapac-ethyl formulations. In field experiments, sequential bispyribac-sodium applications controlled annual bluegrass 93%, but trinexapac-ethyl did not affect efficacy. Tank-mixing all trinexapac-ethyl formulations with bispyribac-sodium provided similar annual bluegrass control and creeping bentgrass quality compared with bispyribac-sodium alone. Applications of bispyribac-sodium reduced dollar spot cover in both years, whereas trinexapac-ethyl reduced dollar spot cover only in 2005.

El bispyribac-sodio controla selectivamente la Poa annua L. en el césped que crece durante la estación templada, pero su eficacia puede ser influenciada por las prácticas de manejo, como es el uso de un regulador de crecimiento de la planta. Se llevaron al cabo experimentos en New Jersey para investigar la eficacia y la absorción del bispyribac-sodio aplicado con trinexapac-ethyl para el control de la Poa annua L. y la tolerancia de céspedes a este compuesto. En los experimentos de laboratorio con Poa annua L., Agrostis stolonifera L. y Lolium perenne L., las mezclas de trinexapac-ethyl con 14C- bispyribac-sodio incrementaron la supuesta absorción foliar de 14C- bispyribac-sodio comparada con el tratamiento sin trinexapac-ethyl. La absorción mejoró con la dosis de trinexapac-ethyl. No se detectaron diferencias en la absorción de 14C-bispyribac-sodio entre las fórmulas de concentración emulsificable, concentrado microencapsulado y polvo humedecible de trinexapac-ethyl. En los experimentos de campo, las aplicaciones secuenciales de bispyribac-sodio controlaron la Poa annua L., en un 93% pero el trinexapac-ethyl no afectó su eficiencia. Todas las mezclas de trinexapac-ethyl con bispyribac-sodio proporcionaron un control similar de la Poa annua L.; y una calidad similar de la Agrostis stolonifera L., en comparación con la aplicación de solamente el bispyribac sodio. Las aplicaciones de bispyribac-sodio redujeron los costos por unidad en ambos años, mientras que la aplicación de trinexapac-ethyl los redujo solamente en el 2005.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, 2002. Primo® label. Greensboro, NC: Syngenta Crop Protection, Inc. 7.Google Scholar
Anonymous, 2004. Velocity® product label. Walnut Creek, CA: Valent U.S.A. Corporation. 5.Google Scholar
Askew, S. D., Beam, J. B., McCall, D. S., Barker, W. L., and Couch, H. B. 2004. Annual bluegrass, roughstalk bluegrass, and dollar spot control with bisypribac. Proc. Northeast Weed Sci. Soc 58:124126.Google Scholar
Beard, J. B. 1970. An ecological study of annual bluegrass. USGA Green Sect. Rec 8:1318.Google Scholar
Beard, J. B., Rieke, P. E., Turgeon, A. J., and Vargas, J. M. 1978. Annual Bluegrass (Poa annua L.) Description, Adaptation, Culture and Control. Res. Rep. 352. East Lansing, MI: Michigan State University Agricultural Experiment Station.Google Scholar
Branham, B. and Calhoun, R. 2005. Velocity: annual bluegrass control at last? Golf Course Manage 73:7377.Google Scholar
Burpee, L. L., Green, D. E., and Stephens, S. L. 1996. Interactive effects of plant growth regulators and fungicides on epidemics of dollar spot in creeping bentgrass. Plant Dis 80:12451250.CrossRefGoogle Scholar
Damalas, C. A., Dhima, K. V., and Eleftherohorinos, I. G. 2008. Bispyribac-sodium efficacy on early watergrass (Echinochloa oryzoides) and late watergrass (Echinochloa Phyllopogon) as affected by coapplication of selected rice herbicides and insecticides. Weed Technol 22:622627.Google Scholar
Dodds, D. M., Reynolds, D. B., Massey, J. H., Smith, C., and Koger, C. 2007. Effect of adjuvant and urea ammonium nitrate on bispyribac-sodium efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli). II. Absorption and translocation. Weed Sci 55:406411.CrossRefGoogle Scholar
Ervin, E. H. and Koski, A. J. 2001. Trinexapac-ethyl increases Kentucky bluegrass leaf cell density and chlorophyll concentration. HortSci 36:787789.Google Scholar
Fagerness, M. J. and Penner, D. 1998. 14C-Trinexapac-ethyl absorption and translocation in Kentucky bluegrass. Crop Sci 38:10231027.Google Scholar
Fagerness, M. J. and Yelverton, F. H. 2000. Tissue production and quality of Tifway bermudagrass as affected by seasonal application patterns of trinexapac-ethyl. Crop Sci 40:493497.Google Scholar
Golembiewski, R. C. and Danneberger, T. K. 1998. Dollar spot severity as influenced by trinexapac-ethyl, creeping bentgrass cultivar, and nitrogen fertility. Agron. J. 90:466470.Google Scholar
Goss, R. M., Baird, J. H., Kelm, S. L., and Calhoun, R. M. 2002. Trinexapac-ethyl and nitrogen effects on creeping bentgrass grown under reduced light conditions. Crop Sci 42:472479.Google Scholar
Heckman, N. L., Horst, G. L., and Gaussoin, R. E. 2001a. Influence of trinexapac-ethyl on specific leaf weight and chlorophyll content on Poa pratensis . Int. Turf. Soc 9:287290.Google Scholar
Heckman, N. L., Horst, G. L., Gaussoin, R. E., and Frank, K. W. 2001b. Storage and handling characteristics of trinexapac-ethyl treated Kentucky bluegrass sod. HortSci 36:11271130.CrossRefGoogle Scholar
Jiang, H. and Fry, J. 1998. Drought responses of perennial ryegrass treated with plant growth regulators. HortSci 33:270273.Google Scholar
Kaminski, J. A. and Dernoeden, P. H. 2007. Seasonal Poa annua L. seedling emergence patterns in Maryland. Crop Sci 47:775779.Google Scholar
Koger, C. H., Dodds, D. M., and Reynolds, D. B. 2007. Effect of adjuvants and urea ammonium nitrate on bispyribac efficacy, absorption, and translocation in barnyardgrass (Echinochloa crus-galli). II. Absorption and translocation. Weed Sci 55:406411.Google Scholar
Lush, W. M. 1989. Adaptation and differentiation of golf course populations of annual bluegrass. Weed Sci 37:5459.Google Scholar
Lycan, D. W. and Hart, S. E. 2005. Cool-season turfgrass response to bispyribac-sodium. HortSci 40:15521555.Google Scholar
Lycan, D. W. and Hart, S. E. 2006a. Seasonal effects on annual bluegrass control in creeping bentgrass with bispyribac-sodium. Weed Technol 20:722727.Google Scholar
Lycan, D. W. and Hart, S. E. 2006b. Foliar and root absorption and translocation of bispyribac-sodium in four cool-season turfgrass species. Weed Technol 20:10151022.Google Scholar
McCarty, B. and Estes, A. 2005. A new weapon in the fight against Poa annua . Golf Course Manage 73:106109.Google Scholar
McCarty, L. B., Weinbrecht, J. S., Toler, J. E., and Miller, G. L. 2004. St. Augustinegrass response to plant growth regulators. Crop Sci 44:13231329.Google Scholar
McCullough, P. E. and Hart, S. E. 2008a. Spray adjuvants influence bispyribac-sodium efficacy for annual bluegrass control in cool-season turfgrasses. Weed Technol 22:257262.Google Scholar
McCullough, P. E. and Hart, S. E. 2008b. Creeping bentgrass (Agrostis stolonifera L.) tolerance to sulfosulfuron. Weed Technol 22:481485.Google Scholar
McDonald, S. J., Dernoeden, P. H., and Kaminski, J. E. 2006a. Creeping bentgrass tolerance and annual bluegrass control with bispyribac-sodium tank-mixed with iron and nitrogen. Online. Appl. Turfgr. Sci. DOI: .Google Scholar
McDonald, S. J., Dernoeden, P. H., and Kaminski, J. E. 2006b. Colonial, creeping, and velvet bentgrass safety and tolerance to bispyribac-sodium. Proc. Northeast Weed Sci. Soc 60:85.Google Scholar
Park, N., Suto, Y., Miura, Y., Nakatani, N., Iori, S., and Ogasawara, M. 2002. Annual bluegrass (Poa annua L.) control in bentgrass (Agrostis palustris Huds.) green with sequential application of bispyribac-sodium combined with dinitroanalines. Weed Biol. Manage 2:159162.Google Scholar
Pearson, B. A., Scott, R. C., and Carey, V. F. 2008. Urea ammonium nitrate effects on bispyribac and penoxsulam efficacy. Weed Technol 22:597601.Google Scholar
Qian, Y. L. and Engelke, M. C. 1999. Influence of trinexapac-ethyl on ‘Diamond’ zoysiagrass in a shade environment. Crop Sci 39:202208.CrossRefGoogle Scholar
Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol 51:501531.Google Scholar
Schmidt, R. E., Talbert, F. L., Baldwin, J. S., Rutledge, E. F., Scherder, E. F., and Wheeler, C. C. 1999. Performance of V-10029 (Bispyribac-sodium) in rice weed control programs. Proc. South. Weed Sci. Soc 52:4950.Google Scholar
Shimizu, T., Nakayama, I., Nagayama, K., Miyazawa, T., and Nezu, Y. 2002. Acetolactate synthase inhibitors. Pages 141. in Böger, P., Wakabayashi, K., and Hirai, K. eds. Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry. New York: Springer-Verlag.Google Scholar
Sprague, H. B. and Burton, G. W. 1937. Annual Bluegrass (Poa annua L.), and Its Requirements for Growth. New Brunswick, NJ: New Jersey Agricultural Experiment Station Bulletin 630. 124.Google Scholar
Steinke, K. and Stier, J. C. 2003. Nitrogen selection and growth regulator applications for improving shaded turf performance. Crop Sci 43:13991406.Google Scholar
Tan, Z. G. and Qian, Y. L. 2003. Light intensity affects gibberellic acid content in Kentucky bluegrass. HortSci 38:113116.Google Scholar
Talbert, R. E. and Burgos, N. R. 2007. History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas rice. Weed Technol 21:324331.CrossRefGoogle Scholar
Young, B. Y. and Hart, S. E. 1998. Optimizing foliar activity of isoxaflutole on giant foxtail (Setaria faberi) with various adjuvants. Weed Sci 46:397402.Google Scholar