Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T04:10:25.888Z Has data issue: false hasContentIssue false

Tomato (Lycopersicon esculentum) Tolerance to Diphenyl Ether Herbicides Applied Postemergence

Published online by Cambridge University Press:  12 June 2017

John B. Masiunas*
Affiliation:
Dep. Hortic., Univ. Ill., Urbana, IL 61801

Abstract

Tolerance of tomato cultivars to diphenyl ether herbicides applied postemergence was determined in greenhouse and field experiments. In greenhouse experiments, tomato cultivar tolerance differed, but acifluorfen injured all genotypes. ‘Carmen’, ‘PetoPride 2’ and ‘Heinz 1350’ tolerated acifluorfen while ‘Advantage’, and ‘Red Plum’ were susceptible. Growth habit and tolerance to 1.1 kg ae/ha acifluorfen was significantly correlated (r2 = 0.24). Field-planted tomato cultivars' tolerance to diphenyl ether herbicides applied postemergence differed. Heinz 1350 and ‘Veeroma’ tolerated diphenyl ethers, while Advantage and Red Plum were susceptible. Potency of diphenyl ethers also varied with oxyfluorfen the most injurious and acifluorfen and fomesafen the least injurious.

Type
Research
Copyright
Copyright © 1989 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Da Silva, J. F., and Warren, G. F. 1976. Effect of stage of growth on metribuzin tolerance. Weed Sci. 24:612615.CrossRefGoogle Scholar
2. Foy, C. L., Jacobsohn, R., and Jain, R. 1988. Screening of Lycopersicon spp. for glyphosate and/or Orobanche aegyptiaca Pers. resistance. Weed Res. 28:383391.CrossRefGoogle Scholar
3. Frear, D. S., Swanson, H. R., and Mansager, E. R. 1983. Acifluorfen metabolism in soybeans: Diphenyl ether bond cleavage and the formation of homoglutathione cysteine and glucose conjugates. Pestic. Biochem. Physiol. 20:299310.CrossRefGoogle Scholar
4. Friesen, G. H. 1979. Weed interference in transplanted tomatoes (Lycopersicon esculentum). Weed Sci. 27:1113.CrossRefGoogle Scholar
5. Gawronski, S. W. 1983. Tolerance of tomato (Lycopersicon esculentum) cultivars to metribuzin. Weed Sci. 31:525527.CrossRefGoogle Scholar
6. Gorski, S. F., and Wertz, M. K. 1987. Tomato (Lycopersicon esculentum) and eastern black nightshade (Solanum ptycanthum) tolerance to acifluorfen. Weed Technol. 1:278281.CrossRefGoogle Scholar
7. Harrison, H. F. Jr., Bhatt, P., and Fassuliotis, G. 1983. Response of calli and seedlings of tomato (Lycopersicon esculentum) cultivars to metribuzin. Weed Sci. 31:533536.CrossRefGoogle Scholar
8. Hess, F. D. 1984. Herbicide absorption and translocation and their relationship to plant tolerances. p. 191215 in Duke, S. O., ed., Weed Physiology. Vol. II. Herbicide Physiology. CRC Press, Inc., Boca Raton, FL.Google Scholar
9. Kapusta, G., Jackson, L. A., and Mason, D. S. 1986. Yield response of weed-free soybeans (Glycine max) to injury from postemergence broadleaf herbicides. Weed Sci. 34:304307.CrossRefGoogle Scholar
10. Lee, S. D., and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods of application. Weed Sci. 30:520526.CrossRefGoogle Scholar
11. Oakley, S. R. 1985. Response of selected genotypes of cotton (Gossypium hirsutum L.) to the herbicide acifluorfen. PhD. thesis. Univ. Arkansas, Little Rock.Google Scholar
12. Pereira, J. F., Splittstoesser, W. E., and Hopen, H. J. 1971. Mechanism of intraspecific selectivity of cabbage to nitrofen. Weed Sci. 19:647651.CrossRefGoogle Scholar
13. Phatak, S. C., and Jaworski, C. A. 1985. UGA 1113MT and UGA 1160MT metribuzin-tolerant tomato germplasm. HortScience 20:1132.CrossRefGoogle Scholar
14. Ritter, R. L., and Coble, H. D. 1981. Penetration, translocation and metabolism of acifluorfen in soybean (Glycine max), common ragweed (Ambrosia artemisiifolia) and common cocklebur (Xanthium pensylvanicum). Weed Sci. 29:474480.CrossRefGoogle Scholar
15. Ritter, R. L., and Coble, H. D. 1984. Influence of crop canopy, weed maturity and rainfall on acifluorfen activity. Weed Sci. 32:185190.CrossRefGoogle Scholar
16. Souza-Machado, V. S., Phatak, C., and Nonnecke, I. L. 1982. Inheritance of tolerance of tomato (Lycopersicon esculentum Mill.) to metribuzin herbicide. Euphytica 31:129138.CrossRefGoogle Scholar
17. Stephenson, G. R., McLeod, J. E., and Phatak, S. C. 1976. Differential tolerance of tomato cultivars to metribuzin. Weed Sci. 24:161165.CrossRefGoogle Scholar
18. Teasdale, J. R. 1987. Selectivity of diphenyl ether herbicides between tomato (Lycopersicon esculentum) and eastern black nightshade (Solanum ptycanthum). Weed Technol 1:165167.CrossRefGoogle Scholar
19. Weaver, S. E., Smits, N., and Tan, C. S. 1987. Estimating yield losses of tomatoes (Lycopersicon esculentum) caused by nightshade (Solanum spp.) interference. Weed Sci. 35:163168.CrossRefGoogle Scholar