Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T03:34:15.122Z Has data issue: false hasContentIssue false

Timing of Soil-Residual Herbicide Applications for Control of Giant Ragweed (Ambrosia trifida)

Published online by Cambridge University Press:  20 January 2017

R. Joseph Wuerffel
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Julie M. Young
Affiliation:
Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907
Joseph L. Matthews
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Vince M. Davis
Affiliation:
Agronomy Department, University of Wisconsin, Madison, WI 53706
William G. Johnson
Affiliation:
Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907
Bryan G. Young*
Affiliation:
Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected].

Abstract

Fall-applied residual and spring preplant burn-down herbicide applications are typically used to control winter annual weeds and may also provide early-season residual control of summer annual weed species such as giant ragweed. Field experiments were conducted from 2006 to 2008 in southern Illinois to (1) assess the emergence pattern of giant ragweed, (2) evaluate the efficacy of several herbicides commonly used for soil-residual control of giant ragweed, and (3) investigate the optimal application timing of soil-residual herbicides for control of giant ragweed. Six herbicide treatments were applied at four application timings: early fall, late fall, early spring, and late spring. Giant ragweed first emerged in mid- and late-March in 2007 and 2008, respectively. The duration of emergence varied by year, with 95% of emergence complete in late May of 2008, but not until early July in 2007. Giant ragweed emergence occurred more quickly in plots that received a fall application of glyphosate + 2,4-D compared with the nontreated. Fall-applied residual herbicides did not reduce giant ragweed emergence in 2007 when compared with the nontreated, with the exception of chlorimuron + tribenuron applied in late fall. Giant ragweed control from early- and late-spring herbicide applications was variable by year. In 2007, saflufenacil (50 and 100 g ai ha−1) and simazine applied in early spring reduced giant ragweed densities by 95% or greater through mid-May; however, in 2008, early-spring applications failed to reduce giant ragweed emergence in mid-April. The only treatments that reduced giant ragweed densities by > 80% through early July were late-spring applications of chlorimuron + tribenuron or saflufenacil at 100 g ha−1. Thus, the emergence patterns of giant ragweed in southern Illinois dictates that best management with herbicides would include late-spring applications of soil-residual herbicides just before crop planting and most likely requires subsequent control with foliar or soil-residual herbicides after crop emergence.

Las aplicaciones de herbicidas residuales en el otoño y de herbicidas para eliminación general de vegetación antes de la siembra en la primavera son usadas típicamente para el control de malezas anuales de invierno y que pueden además brindar un control residual de malezas anuales de verano tales como Ambrosia trifida, temprano en la temporada. Experimentos de campo fueron realizados entre 2006 y 2008, en el sur de Illinois, para (1) evaluar el patrón de emergencia de A. trifida, (2) evaluar la eficacia de varios herbicidas comúnmente usados para el control residual en el suelo de A. trifida, e (3) investigar el momento de aplicación óptimo para herbicidas residuales en el suelo para el control de A. trifida. Se aplicaron seis tratamientos de herbicidas en cuatro momentos de aplicación: temprano en el otoño, tarde en el otoño, temprano en la primavera, y tarde en la primavera. A. trifida emergió primero durante la mitad y el final de Marzo en 2007 y 2008, respectivamente. La duración de la emergencia varió dependiendo del año, con 95% de la emergencia completándose al final de Mayo de 2008, pero no hasta el inicio de Julio en 2007. La emergencia de A. trifida ocurrió más rápidamente en parcelas que recibieron una aplicación de glyphosate + 2,4-D durante el otoño al compararse con el testigo sin tratamiento. Los herbicidas residuales aplicados en el otoño no redujeron la emergencia de A. trifida en 2007 cuando se compararon con el testigo, con la excepción de chlorimuron + tribenuron aplicados al final del otoño. El control de A. trifida con aplicaciones temprano y tarde durante la primavera fue variable dependiendo del año. En 2007, saflufenacil (50 y 100 g ai ha−1) y simazine aplicados temprano en la primavera redujeron las densidades de A. trifida en 95% o más hasta la mitad de Mayo. Sin embargo, en 2008, aplicaciones realizadas temprano en la primavera fallaron en reducir la emergencia de A. trifida en la mitad de Abril. Los únicos tratamientos que redujeron las densidades de A. trifida > 80% hasta el inicio de Julio fueron las aplicaciones de chlorimuron + tribenuron o saflufenacil a 100 g ha−1 tarde en la primavera. Así, los patrones de emergencia de A. trifida en el sur de Illinois dictan que el mejor manejo con herbicidas debería incluir aplicaciones de herbicidas de suelo residuales tarde en la primavera antes de la siembra del cultivo y muy probablemente requiere un control de seguimiento con herbicidas foliares y de suelo residuales después de la emergencia del cultivo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Daniel O. Stephenson, Louisiana State University.

References

Literature Cited

Abul-Fatih, HA, Bazzaz, FA (1979) The biology of Ambrosia trifida L. influence of species removal on the organization of the plant community. New Phytol 83:813816 Google Scholar
Barnes, J, Johnson, B, Gibson, K, Weller, S (2004) Crop rotation and tillage system influence late-season incidence of giant ragweed and horseweed in Indiana soybean. Crop Manage. DOI: Google Scholar
Bassett, IJ, Crompton, CW (1982) The biology of Canadian weeds: Ambrosia trifida L. Can J Plant Sci 62:10031010 Google Scholar
Box, GP, Hunter, WG, Hunter, JS (1978) Statistics for Experimenter: An Introduction to Design, Data Analysis, and Model Building. New York: J. Wiley. 653 Google Scholar
Davis, VM, Kruger, GR, Young, BG, Johnson, WG (2010) Fall and spring preplant herbicide applications influence spring emergence of glyphosate-resistant horseweed (Conyza canadensis). Weed Technol 24:1119 Google Scholar
Dunnett, CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50:10961121 Google Scholar
Grossmann, K, Hutzler, J, Caspar, G, Kwiatkowski, J, Brommer, CL (2011) Saflufenacil (Kixor™): biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Sci 59:290298 Google Scholar
Harrison, SK, Regnier, EE, Schmoll, JT, Webb, JE (2001) Competition and fecundity of giant ragweed in corn. Weed Sci 49:224229 Google Scholar
Hartzler, RG, Harrison, K, Sprague, CL (2002) Emergence characteristics of giant ragweed biotypes from Ohio, Illinois, and Iowa. Proc North Central Weed Sci Soc 57:51 Google Scholar
Hasty, RF, Sprague, CL, Hager, AG (2004) Weed control with fall and early-preplant herbicide applications in no-till soybean. Weed Technol 18:887892 Google Scholar
Littell, RC, Henry, PR, Ammerman, CB (1998) Statistical analysis of repeated measures data using SAS procedures. J Anim Sci 76:12161231 Google Scholar
Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS for Mixed Models. 2nd edn. Cary, NC: SAS Institute. 198 pGoogle Scholar
Krausz, RF, Young, BG, Matthews, JL (2003) Winter annual weed control with fall-applied corn (Zea mays) herbicides. Weed Technol 17:516520 Google Scholar
Monnig, N, Bradley, KW (2007) Influence of fall and early spring herbicide applications on winter and summer annual weed populations in no-till soybean. Weed Technol 21:724731 Google Scholar
Norsworthy, JK, Jha, P, Steckel, LE, Scott, RC (2010) Confirmation and control of glyphosate-resistant giant ragweed (Ambrosia trifida) in Tennessee. Weed Technol 24:6470 Google Scholar
Rousonelos, SL (2010) Mechanism of Resistance in Common Ragweed to PPO-Inhibiting Herbicides. . Champaign, IL: University of Illinois. 9 pGoogle Scholar
Saxton, AM (1998) A macro for converting mean separation output to letter groupings in Proc mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International. Cary, NC: SAS Institute Google Scholar
Schutte, BJ (2007) Biology and Ecology of Ambrosia trifida L. Seedling Emergence. Ph.D dissertation. Columbus, OH: The Ohio State University. 27 pGoogle Scholar
Soltani, N, Shropshire, C, Sikkema, P (2011) Giant ragweed (Ambrosia trifida L.) control in corn. Can J Plant Sci 91:577581 Google Scholar
Stoller, EW, Wax, LM (1973) Periodicity of germination and emergence of some annual weeds. Weed Sci 21:574580 Google Scholar
Stougaard, RN, Kapusta, G, Roskamp, G (1984) Early preplant herbicide applications for no-till soybean (Glycine max) weed control. Weed Sci 32:293298 Google Scholar
Webster, TM, Loux, MM, Regnier, EE, Harrison, SK (1994) Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol 8:559564 Google Scholar
Westhoven, AM, Davis, VM, Gibson, KD, Weller, SC, Johnson, WG (2008) Field presence of glyphosate-resistant horseweed (Conyza canadensis), common lambsquarters (Chenopodium album), and giant ragweed (Ambrosia trifida) biotypes with elevated tolerance to glyphosate. Weed Technol 22:544548 Google Scholar
Young, BG (2006) Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol 20:301307 Google Scholar
Zelaya, IA, Owen, MDK (2004) Evolved resistance to acetolactate synthase-inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa. Weed Sci 52:538548 Google Scholar