Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T23:19:47.819Z Has data issue: false hasContentIssue false

Texasweed (Caperonia palustris) Interference in Drill-Seeded Rice

Published online by Cambridge University Press:  20 January 2017

Rakesh K. Godara*
Affiliation:
School of Plant Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
Billy J. Williams
Affiliation:
Scott Research Extension Center, Louisiana State University Agricultural Center, 212-B Macon Ridge Road, Winnsboro, LA 71295
Eric P. Webster
Affiliation:
School of Plant Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
James L. Griffin
Affiliation:
School of Plant Soil and Environmental Sciences, Louisiana State University and A&M College, Baton Rouge, LA 70803
James P. Geaghan
Affiliation:
Department of Experimental Statistics, Louisiana State University and A&M College, Baton Rouge, LA 70803
*
Corresponding author's E-mail: [email protected]

Abstract

Field research was conducted near Saint Joseph, LA, in 2008 and 2009 to evaluate Texasweed interference in drill-seeded rice. Season-long Texasweed interference at 1 plant m−2 was estimated to cause 5% yield loss. Yield loss from 10 and 50 plants m−2 was 31 and 61%, respectively. Yield loss was primarily due to a reduction in effective tillers per square meter. Thousand-grain weight of rice was not affected by season-long Texasweed interference. Path analysis indicated yield component compensation, i.e., a reduction in effective tillers per square meter probably caused an increase in grains per panicle. However, that effect was not strong enough to reverse the detrimental effect of reduced effective tillers per square meter on rice yield. The critical period of Texasweed interference to cause more than 5% yield loss was estimated to be between 0 and 6 wk after rice emergence.

Se realizó una investigación de campo en Saint Joseph, LA en 2008 y 2009 para evaluar la interferencia de Caperonia palustris en arroz de siembra directa. La interferencia de 1 planta m−2 de C. palustris a lo largo de todo el ciclo del cultivo se estimó que causó 5% de pérdida en el rendimiento. La pérdida en el rendimiento debido a 10 y 50 plantas m−2 fue 31 y 61%, respectivamente. Esta pérdida se debió primordialmente a una reducción en los retoños o hijos efectivos por m−2. El peso de mil granos de arroz no fue afectado por la interferencia de C. palustris a lo largo del ciclo productivo. Un análisis de trayectoria (path) indicó la presencia de una compensación en el componente de rendimiento (por ejemplo, una reducción en retoños efectivos por m−2 probablemente causó un incremento en granos por panícula). Sin embargo, este efecto no fue suficientemente fuerte para revertir el efecto dañino de la reducción en los retoños efectivos por m−2 sobre el rendimiento. Se estimó que el período crítico de interferencia de C. palustris para evitar 5% de pérdidas en el rendimiento está entre 0 y 6 semanas después de la emergencia del arroz.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2008. Aim EC herbicide product label. FMC Publication No. 2011-03-07-v. Philadelphia, PA FMC Corporation.Google Scholar
Anonymous. 2011. Rice Chemical Weed Control. In Louisiana Suggested Chemical Weed Control Guide. Baton Rouge, LA Louisiana State University Agricultural Center and Louisiana Cooperative Extension Service Publication No. 1565, revised March 2011, 46 p.Google Scholar
Bryson, C. T. and DeFelice, M. S. eds. 2009. Weeds of the South. Athens, GA University of Georgia Press. 185 p.Google Scholar
Caton, B. P., Foin, T. C., and Hill, J. E. 1997. Phenotypic plasticity of Ammannia spp. in competition with rice. Weed Res. 37:3338.CrossRefGoogle Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.CrossRefGoogle Scholar
Cousens, R. 1988. Misinterpretation of results in weed research through inappropriate use of statistics. Weed Res. 28:281289.CrossRefGoogle Scholar
Donald, W. W. and Khan, M. 1996. Canada thistle (Cirsium arvense) effects on yield and components of spring wheat (Triticum aestivum). Weed Sci. 44:114121.CrossRefGoogle Scholar
Gann, G. D., Bradley, K. A., and Woodmansee, S. W. 2007. The floristic inventory of south Florida database online. Miami, FL: The Institute for Regional Conservation. http://regionalconservation.org/ircs/database/plants/SFPlantListByL.asp. Accessed: August 15, 2011.Google Scholar
Gianessi, L. P., Silvers, C. S., Sankula, S., and Carpenter, J. E. 2002. Plant biotechnology: current and potential impact for improving pest management in U.S. agriculture—an analysis of 40 case studies—herbicide tolerant rice. Washington, DC National Center for Food and Agricultural Policy. 8 p.Google Scholar
Godara, R. K. 2010. Texasweed [Caperonia palustris (L.) St. Hil.] Interference and Management in Drill-Seeded Rice. Ph.D Dissertation. Baton Rouge, LA Louisiana State University. 106 p.Google Scholar
Godfrey, R. K. and Wooten, J. W. 1981. Aquatic and wetland plants of southeastern United States: dicotyledons. Athens, GA University of Georgia Press. Pp. 281282.CrossRefGoogle Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period of weed control in grain corn (Zea mays). Weed Sci. 40:441447.CrossRefGoogle Scholar
Harper, J. L. 1977. Population Biology of Plants. New York Academic. 892 p.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., VanAcker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50:773786.Google Scholar
Koger, C. H., Reddy, K. N., and Poston, D. H. 2004. Factors affecting seed germination, seedling emergence, and survival of Texasweed (Caperonia palustris). Weed Sci. 52:989995.CrossRefGoogle Scholar
Li, C. C. 1975. Path Analysis-a Primer. Pacific Grove, CA Boxwood. 346 p.Google Scholar
Martin, S. G., Van Acker, R. C., and Friesen, L. F. 2001. Critical period of weed control in spring canola. Weed Sci. 49:326333.Google Scholar
Poston, D. H., Nandula, V. K., Griffin, R. M., and Koger, C. H. 2007. Texasweed (Caperonia palustris) control in soybean with postemergence herbicides. Weed Technol. 21:670673.Google Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc. Mixed. Pages 12431246 in Proceedings of the 23rd SAS Users Group International. Nashville, TN SAS Institute, Cary, NC.Google Scholar
Smith, R. J. Jr. 1968. Weed competition in rice. Weed Sci. 16:252255.Google Scholar
Smith, R. J. Jr. 1984. Competition of spreading dayflower (Commelina diffusa) with rice (Oryza sativa). Weed Sci. 32:116119.Google Scholar
Sparre, P. and Vanema, S. C. 1998. Introduction to tropical fish stock assessment, part 1: manual. Rome FAO Fisheries Technical Paper. No. 306.1, revision 2. 47 p.Google Scholar
[SWSS] Southern Weed Science Society. 1998. Weeds of the United States and Canada. CD-ROM. Champaign, IL SWSS.Google Scholar
[USDA-NRCS] U.S. Department of Agriculture–National Resource Conservation Service. 2011. The PLANTS Database. Baton Rouge, LA: National Plant Data Center. http://plants.usda.gov. Accessed: August 15, 2011.Google Scholar
Zhang, J. X., Li, C. H., Lou, Y. L., Deng, Y. Y., and Qiu, C. Y. 2004. Studies on the transplanting rice yield loss caused by weed Alternanthera philoxeroides and its economic threshold. Acta Agric. Shanghai. 20:9598.Google Scholar