Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:56:44.578Z Has data issue: false hasContentIssue false

Testing Control Options for Western Salsify (Tragopogon dubius) on Conservation Reserve Program Lands

Published online by Cambridge University Press:  20 January 2017

Jane M. Mangold*
Affiliation:
Montana State University, Bozeman, Montana
Allison L. Lansverk
Affiliation:
Montana State University, Bozeman, Montana
*
Corresponding author's E-mail: [email protected]

Abstract

Western salsify has recently formed dense stands in Conservation Reserve Program (CRP) lands in north-central Montana. Our objective was to test the effects of various herbicide treatments and mowing on western salsify and associated vegetation in CRP lands. Six herbicide treatments and one mowing treatment were applied at three sites in 2010. Herbicide treatments included combinations of glyphosate, 2,4-D, dicamba, and/or metsulfuron-methyl applied when western salsify was either in the rosette or early flowering stage. Mowing was applied at the early flowering stage. Herbicide treatments reduced western salsify and increased perennial grass at one of the three sites, which was the site most dominated by western salsify. When dicamba (0.14 kg ae ha−1) plus 2,4-D (0.48 kg ae ha−1) was applied at the rosette stage, western salsify adult plant density and biomass were reduced to zero and perennial grass biomass increased by 108% in 2010. In 2011, western salsify adult plant density was lower across all herbicide treatments compared to the mowed and nontreated plots. Annual grass density increased by up to 400% when herbicide applications including metsulfuron-methyl were applied at the early flowering stage. Mowing did not control western salsify. Results suggest dicamba plus 2,4-D applied at the rosette stage can provide effective control of western salsify and increase perennial grasses without stimulating the emergence of annual grasses.

Recientemente, Tragopogon dubius ha formado poblaciones densas en tierras del Programa de Reservas para la Conservación (CRP) en el centro-norte de Montana. Nuestro objetivo fue el evaluar los efectos de varios tratamientos de herbicidas y chapia sobre T. dubius y vegetación asociada en tierras de CRP. Seis tratamientos de herbicidas y un tratamiento de chapia fueron aplicados en tres sitios en 2010. Los tratamientos de herbicidas incluyeron combinaciones de glyphosate, 2,4-D, dicamba, y/o metsulfuron-methyl aplicadas cuando T. dubius estuvo en el estado de roseta o de floración temprana. La chapia fue aplicada en el estado de floración temprana. Los tratamientos de herbicidas redujeron T. dubius e incrementaron las gramíneas perennes en uno de los tres sitios, el cual fue el sitio dominado por T. dubius. Cuando se aplicó dicamba (0.14 kg ae ha−1) más 2,4-D (0.48 kg ae ha−1) en el estado de roseta, la densidad y biomasa de plantas adultas de T. dubius se redujeron a cero, y la biomasa de gramíneas perennes incrementó 108% en 2010. En 2011, la densidad de plantas adultas de T. dubius fue menor en todos los tratamientos de herbicidas en comparación con las parcelas con chapia o sin tratamiento. La densidad de gramíneas anuales incrementó en 400% cuando las aplicaciones de herbicidas incluyeron metsulfuron-methyl y fueron realizadas en el estado de floración temprana. La chapia no controló T. dubius. Los resultados sugieren que dicamba más 2,4-D aplicados en el estado de roseta pueden brindar un control efectivo de T. dubius e incrementar las poblaciones de gramíneas perennes sin estimular la emergencia de gramíneas anuales.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: P.O. Box 173120, Bozeman, MT 59717.

References

Literature Cited

Anonymous. 2001. Escort® herbicide product label. DuPont Publication No. H-65521. Wilmington, DE: E. I. DuPont de Nemours and Company.Google Scholar
Beck, K. G. 1999. Biennial thistles. Pages 145161 in Sheley, R. L. and Clark, J. K., eds. Biology and Management of Noxious Rangeland Weeds. Corvallis, OR Oregon State University Press.Google Scholar
Clements, D. R., Upadhyaya, M. K., and Bos, S. J. 1999. The biology of Canadian weeds. 110. Tragopogon dubius Scop., Tragopogon pratensis L., and Tragopogon porrifolius L. Can. J. Plant Sci. 79: 153163.Google Scholar
Cranston, R. S., Woods, J. A., and Blumenauer, D. 1986. Meadow goatsbeard control on rangeland. Expert Committee on Weeds−Western Canada. 1986 Res. Rep. 3:69.Google Scholar
Crawford, J. A., VanDyke, W., and Meyers, S. M. 1986. Fall diet of blue grouse (Dendragapus obscures pallidus) in Oregon. Great Basin Nat. 46:123127.Google Scholar
Dickerson, J. R. and Fay, P. K. 1982. Biology and control of houndstongue (Cynoglossum officinale). Proc. Western Soc. Weed Sci. 35:8385.Google Scholar
Gross, K. L. and Werner, P. 1982. Colonizing abilities of “biennial” plant species in relation to ground cover: implications for the distributions in a successional sere. Ecology. 63:921931.Google Scholar
Haferkamp, M. R. 2001. Annual bromes—good or bad? Rangelands. 23:3235.Google Scholar
Haferkamp, M. R., Velsky, J. D., Borman, M. M., and Heitschmidt, R. K., and Currie, P. O. 1993. Effects of mechanical treatments and climatic factors on the productivity of Northern Great Plains rangelands. J. Range. Manage. 46:346350.Google Scholar
Knezevic, S. 2009. Controlling common mullein in pastures. University of Nebraska-Lincoln CropWatch. http://cropwatch.unl.edu/web/cropwatch/archive?articleId=.ARCHIVES.2009.CROP12.WEEDS_COMMON_MULLEIN.HTM. Accessed: September 13, 2012.Google Scholar
Mack, R. N. 2011. Fifty years of 'waging war on cheatgrass', research advances, while meaningful control languishes. Pages 253265 in Richardson, D. M., ed. Fifty Years of Invasion Ecology: The Legacy of Charles Elton. Oxford, UK Wiley-Blackwell.Google Scholar
Mueggler, W. F. and Stewart, W. L. 1980. Grassland and shrubland habitat types of western Montana. United States Department of Agriculture -Forest Service General Technical Report INT-66. Pages 154 p.Google Scholar
National Climatic Data Center. 2013. www.noaa.gov. Accessed: January 9, 2013.Google Scholar
Novak, S. J., Soltis, D. E., and Soltis, P. S. 1991. Ownbey's Tragopogons: 40 years later. Am. J. Bot. 37:487499.Google Scholar
Rice, P.M. 2012. INVADERS Database System. (http://invader.dbs.umt.edu). Division of Biological Sciences, University of Montana, Missoula, MT 59812-4824. Accessed: April 27, 2012.Google Scholar
Rinella, M. J., Mangold, J. M., Espeland, E. K., Sheley, R. L., and Jacobs, J. S. 2012. Long-term population dynamics of seeded plants in invaded grasslands. Ecol. Applic. 22:13201329.Google Scholar
Software, SAS. 2010. Version 9.3 of the SAS System for Microsoft Windows. Cary, NC SAS Institute Inc.Google Scholar
Sheley, R. L. and Jacobs, J. S. 1997. Response of spotted knapweed and grass to picloram and fertilizer combinations. J. Range Manage. 50:263267.Google Scholar
Sheley, R. L., Jacobs, J. S., Halstvedt, M. B., and Duncan, C. A. 2000. Spotted knapweed and grass response to herbicide treatments. J. Range Manage. 53:176182.Google Scholar
Sheley, R. L., Martin, J. M., and Jacobs, J. S. 2004. Integrating 2, 4-D and sheep grazing to rehabilitate spotted knapweed infestations. J. Range Manage. 57:371375.Google Scholar
Upadhyaya, M. K., Qi, M. Q., Furness, N. H., and Cranston, R. S. 1993. Meadow salsify and western salsify: two rangeland weeds of British Columbia. Rangelands. 15:148150.Google Scholar
(USDA-FSA) United States Department of Agriculture Farm Service Agency. 2012. https://www.fsa.usda.gov/FSA/webapp?area=home&subject=copr&topic=crp. Accessed September 13, 2012.Google Scholar
Whitson, T. D. and Koch, D. W. 1998. Control of downy brome (Bromus tectorum) with herbicides and perennial grass competition. Weed Technol. 12:391396.Google Scholar