Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T17:25:09.952Z Has data issue: false hasContentIssue false

Synergistic Effects of Atrazine and Mesotrione on Susceptible and Resistant Wild Radish (Raphanus raphanistrum) Populations and the Potential for Overcoming Resistance to Triazine Herbicides

Published online by Cambridge University Press:  20 January 2017

Michael J. Walsh*
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Karrie Stratford
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Kent Stone
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Stephen B. Powles
Affiliation:
Australian Herbicide Resistance Initiative, School of Plant Biology, UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
*
Corresponding author's E-mail: [email protected]

Abstract

The synergistic interaction between mesotrione, a hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide, and atrazine, a photosystem II (PS II)-inhibiting herbicide, has been identified in the control of several weed species. A series of dose–response studies examined the synergistic effect of these herbicides on a susceptible (S) wild radish population. The potential for this interaction to overcome target-site psbA gene-based atrazine resistance in a resistant (R) wild radish population was also investigated. Control of S wild radish with atrazine was enhanced by up to 40% when low rates (1.0 to 1.5 g ha−1) of mesotrione were applied in combination. This synergistic response was demonstrated across a range of atrazine–mesotrione rate combinations on this S wild radish population. Further, the efficacy of 1.5 g ha−1 mesotrione increased control of the R population by a further 60% when applied in combination with 400 g ha−1 of atrazine. This result clearly demonstrated the synergistic interaction of these herbicides in overcoming the target-site resistance mechanism. The mechanism responsible for the observed synergistic interaction between mesotrione and atrazine remains unknown. However, it is speculated that an alternate atrazine binding site may be responsible. Regardless of the biochemical nature of this interaction, evidence from whole-plant bioassays clearly demonstrated that synergistic herbicide combinations improve herbicide efficiency, with lower application rates required to control weed populations. This, combined with the potential to overcome psbA gene-based triazine resistance, and, thereby, regain the use of these herbicides, will result in more sustainable herbicide use.

La interacción sinérgica entre mesotrione, un herbicida inhibidor de hydroxyphenylpyruvate dioxygenase (HPPD), y atrazine, un herbicida inhibidor del fotosistema II (PS II), ha sido identificada en el control de varias especies de malezas. Una serie de estudios de dosis-respuesta examinó el efecto sinérgico de estos herbicidas en una población susceptible (S) de Raphanus raphanistrum. También se investigó el potencial de esta interacción para solventar la resistencia de sitio activo a atrazine basada en el gene psbA en una población resistente (R) de dicha maleza. El control con atrazine de R. raphanistrum (S) mejoró hasta 40% cuando se aplicó en combinación con dosis bajas de mesotrione (1.0–1.5 g ha−1). Esta respuesta sinérgica se demostró a través de una gama de combinaciones de dosis atrazine-mesotrione en esta población de R. raphanistrum (S). Además, la eficacia de mesotrione a 1.5 g ha−1 incrementó el control de la población (R) en otro 60% cuando se aplicó en combinación con 400 g ha−1 de atrazine. Este resultado demostró claramente la interacción sinérgica de estos herbicidas para solventar problemas asociados a este mecanismo de resistencia en el sitio activo. Aún se desconoce el mecanismo responsable de la interacción sinérgica observada entre mesotrione y atrazine. Sin embargo, se especula que puede haber una asociación reducida por competencia entre atrazine y plastoquinone o un sitio alterno de asociación de atrazine puede ser el responsable. Sin importar la naturaleza bioquímica de esta interacción, la evidencia de los bioensayos con plantas enteras demostró claramente que las combinaciones sinérgicas de herbicidas mejoran la eficiencia de los herbicidas, con dosis de aplicación más bajas requeridas para controlar las poblaciones de malezas. Esta situación, combinada con el potencial para solventar la resistencia a atrazine basada en el gene psbA y por lo tanto poder recuperar el uso este herbicida, resultará en un uso de herbicidas más sostenible.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, J. A., Martin, A. R., and Roeth, F. W. 2006. Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technol. 20:267274.CrossRefGoogle Scholar
Armel, G. R., Hall, G. J., Wilson, H. P., and Cullen, N. 2005. Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Sci. 53:202211.CrossRefGoogle Scholar
Bollman, S. L., Kells, J. J., and Penner, D. 2006. Weed response to mesotrione and atrazine applied alone and in combination preemergence. Weed Technol. 20:903907.CrossRefGoogle Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds 15:2022.CrossRefGoogle Scholar
Friesen, L. J. S. and Powles, S. B. 2007. Physiological and molecular characterization of atrazine resistance in a wild radish (Raphanus raphanistrum) population. Weed Technol. 21:910914.CrossRefGoogle Scholar
Fuerst, E. P. and Norman, M. A. 1991. Interactions of herbicides with photosynthetic electron transport. Weed Sci. 39:458464.CrossRefGoogle Scholar
Hess, D. F. 2000. Light-dependent herbicides: an overview. Weed Sci. 48:160170.CrossRefGoogle Scholar
Hugie, J. A., Bollero, G. A., Tranel, P. J., and Riechers, D. E. 2008. Defining the rate requirements for synergism between mesotrione and atrazine in redroot pigweed (Amaranthus retroflexus). Weed Sci. 56:265270.CrossRefGoogle Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Lee, D. L., Prisbylla, M. P., Cromartie, T. H., Dagarin, D. P., Howard, S. W., Provan, W. M., Ellis, M. K., Fraser, T., and Mutter, L. C. 1997. The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci. 45:601609.CrossRefGoogle Scholar
Norris, S. R., Barrette, T. R., and DellaPenna, D. 1995. Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:21392149.Google ScholarPubMed
Pallett, K. E., Little, J. P., Sheekey, M., and Veerasekaran, P. 1998. The mode of action of isoxaflutole, I: physiological effects, metabolism, and selectivity. Pestic. Biochem. Physiol. 62:113124.CrossRefGoogle Scholar
SAS Institute. 2009. The SAS System. Cary, NC SAS Institute.Google Scholar
Sutton, P., Richards, C., Buren, L., and Glasgow, L. 2002. Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci. 58:981984.CrossRefGoogle ScholarPubMed
Tammes, P. M. L. 1964. Isoboles, a graphic representation of synergism in pesticides. Eur. J. Plant Pathol. 70:7380.Google Scholar
Trebst, A. and Draber, W. 1986. Inhibitors of photosystem II and the topology of the herbicide and QB binding polypeptide in the thylakoid membrane. Photosynth. Res. 10:381392.CrossRefGoogle ScholarPubMed
Walsh, M. J., Owen, M. J., and Powles, S. B. 2007. Frequency and distribution of herbicide resistance in Raphanistrum populations randomly collected across the Western Australia wheatbelt. Weed Res. 47:542550.CrossRefGoogle Scholar
Walsh, M. J., Powles, S. B., Beard, B. R., Parkin, B. T., and Porter, S. A. 2004. Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Sci. 52:813.CrossRefGoogle Scholar
Woodyard, A. J., Hugie, J. A., and Riechers, D. E. 2009. Interactions of mesotrione and atrazine in two weed species with different mechanisms for atrazine resistance. Weed Sci. 57:369378.CrossRefGoogle Scholar