Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:08:27.106Z Has data issue: false hasContentIssue false

Sweet Corn Response and Weed Control to Saflufenacil plus Dimethenamid-P in Organic Soils

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
University of Florida Everglades Research and Education Center, Belle Glade, FL 33430
Alan L. Wright
Affiliation:
University of Florida Everglades Research and Education Center, Belle Glade, FL 33430
Jose V. Fernandez
Affiliation:
University of Florida Everglades Research and Education Center, Belle Glade, FL 33430
*
Corresponding author's Email: [email protected].

Abstract

There are limited PRE herbicide options available to provide residual weed control in sweet corn grown on organic soils in the Everglades Agricultural Area (EAA). Field studies were established to determine the efficacy of PRE applied saflufenacil + dimethenamid-P at six rates ranging from 10 + 88 to 319 + 2802 g ai ha−1 on weed control and sweet corn tolerance on organic soils in the EAA in 2011 and 2012. Saflufenacil + dimethenamid-P is a premix recently labeled for PRE weed control in field corn at 50 + 438 to 90 + 788 g ha−1 depending on soil texture. There was no phytotoxic effect of PRE applied saflufenacil + dimethenamid-P on sweet corn. At 42 d after treatment, common lambsquarters, common purslane, and spiny amaranth were controlled 90% with saflufenacil + dimethenamid-P at 58 + 508, 71 + 622, and 58 + 512 g ha−1, respectively. Sweet corn yield at 95% of the weed-free yield was estimated to be obtained at 69 + 606 g ha−1 of saflufenacil + dimethenamid-P. Our results show that saflufenacil + dimethenamid-P at 69 + 606 to 71 + 622 g ha−1 controlled three common weeds and maintained acceptable sweet corn yield. Labeled rates of saflufenacil + dimethenamid-P for field corn on mineral soils were adequate for weed control in sweet corn on organic soils.

Existen pocas opciones de herbicidas PRE disponibles para el control residual de malezas en maíz dulce producido en suelos orgánicos en el Área Agrícola de los Everglades (EAA). Se establecieron experimentos de campo para determinar la eficacia de saflufenacil + dimethenamid-P aplicados PRE a seis dosis variando de 10 + 88 a 319 + 2802 g ai ha−1 para el control de malezas y la tolerancia del maíz dulce en suelos orgánicos en el EAA en 2011 y 2012. Saflufenacil + dimethenamid-P es una premezcla recientemente registrada para el control PRE de malezas en maíz para grano con dosis de 50 + 438 a 90 + 788 g ha−1 dependiendo de la textura del suelo. No hubo efecto fitotóxico de saflufenacil + dimethenamid-P aplicado PRE en maíz dulce. A 42 d después del tratamiento, Chenopodium album, Portulaca oleracea, y Amaranthus spinosus fueron controlados en 90% con saflufenacil + dimethenamid-P a 58 + 508, 71 + 622, y 58 + 512 g ha−1, respectivamente. El rendimiento del maíz dulce a 95% del rendimiento del testigo libre de malezas se estimó que se pudo obtener con 69 + 606 g ha−1 de saflufenacil + dimethenamid-P. Nuestros resultados muestran que saflufenacil + dimethenamid-P de 69 + 606 a 71 + 622 g ha−1 controló tres de las malezas más comunes y mantuvo rendimientos aceptables en el maíz dulce. Las dosis en la etiqueta de saflufenacil + dimethenamid-P para maíz para grano en suelos minerales fueron adecuadas para el control de malezas en maíz dulce en suelos orgánicos.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous (2009) Kixor herbicide technical brochure. BASF Corporation. http://gcgdgraphics.com/images/lay_basf_kixor_brochure.pdf. Accessed August 7, 2013Google Scholar
Anonymous (2012) Kixor® herbicide. BASF Corporation. http://gcgdgraphics.com/images/lay_basf_kixor_brochure.pdf. Accessed May 23, 2013Google Scholar
Böger, P, Matthes, B, Schmalfu, J (2000) Towards the primary target of chloroacetamides—new findings pave the way. Pest Manag Sci 56:497508 Google Scholar
Boydston, RA, Collins, HP, Alva, AK (2008) Control of volunteer potato (Solanum tuberosum) in sweet corn with mesotrione is unaffected by atrazine and tillage. Weed Technol 22:654659 Google Scholar
Courdechet, M, Bocoin, PF, Chollet, R, Seckinger, K, Boger, P (1997) Biological activity of two stereoisomers of the N-thienyl chloroacetamide herbicide dimethenamid. Pest Sci 50:221227 Google Scholar
Davis, VM, Kruger, GR, Young, BG, Johnson, WG (2010) Fall and spring preplant herbicide applications influence spring emergence of glyphosate-resistant horseweed (Conyza canadensis). Weed Technol 24:1119 Google Scholar
Geier, PW, Stahlman, PW, Charvat, LD (2009) Dose responses of five broadleaf weeds to saflufenacil. Weed Technol 23:313316 Google Scholar
Grossmann, K, Niggeweg, R, Christiansen, N, Looser, R, Ehrhardt, T (2010) The herbicide saflufenacil (Kixor®) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci 58:19 Google Scholar
Liebl, R, Walter, H, Bowe, SJ, Holt, TJ, Westberg, DE (2008) BAS 800H: a new herbicide for preplant burndown and preemergence dicot weed control. Weed Sci Soc Am Abstr 48:120 Google Scholar
Malik, MS, Norsworthy, JK, Culpepper, AS, Riley, MB, Bridges, W Jr. (2008) Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci 56:588595 Google Scholar
Mitchell, G, Bartlett, DW, Fraser, TEM, Hawkes, TR, Holt, DC, Townson, JK, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci. 57:120128 Google Scholar
Moran, M, Sikkema, PH, Hall, JC, Swanton, CJ (2011a) Sodium safens saflufenacil applied postemergence to corn (Zea mays). Weed Sci 59:413 Google Scholar
Moran, M, Sikkema, PH, Swanton, CJ (2011b) Efficacy of saflufenacil plus dimethenamid-P for weed control in corn. Weed Technol 25:330334 Google Scholar
Morichetti, S, Ferrell, J, MacDonald, G, Sellers, B, Rowland, D (2012) Weed management and peanut response from applications of saflufenacil. Weed Technol 26:261266 Google Scholar
O'Connell, PJ, Harms, CT, Allen, JRF (1998) Metolachlor, S-metolachlor and their role within sustainable weed-management. Crop Prot 17:207212 Google Scholar
Odero, DC (2012) Response of ragweed parthenium (Parthenium hysterophorus) to saflufenacil and glyphosate. Weed Technol 26:443448 Google Scholar
Owen, LN, Mueller, TC, Main, CL, Bond, J, Steckel, LE (2011) Evaluating rates and application timings of saflufenacil for control of glyphosate-resistant horseweed (Conyza canadensis) prior to planting no-till cotton. Weed Technol 25:15 Google Scholar
Pinheiro, J.C., Bates, DM (2000) Mixed-Effects Models in S and S-PLUS. New York: Springer- Verlag. 530 pGoogle Scholar
R Development Core Team (2012) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing Google Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Statist Software 12:122 Google Scholar
Robinson, DE, Soltani, N, Sikkema, PH (2012) Response of eight sweet maize (Zea mays L.) hybrids to saflufenacil alone or pre-mixed with dimethenamid-P. Am J Plant Sci 3:96101 Google Scholar
Senseman, SA, ed (2007) Herbicide Handbook. 9th ed. Champaign, IL: Weed Science Society of America. Pp 262264 Google Scholar
Soltani, N, Shropshire, C, Sikkema, PH (2009) Response of corn to preemergence and postemergence applications of saflufenacil. Weed Technol 23:331334 Google Scholar
Waggoner, BS, Mueller, TC, Bond, JA, Steckel, LE (2011) Control of glyphosate-resistant horseweed (Conyza canadensis) with saflufenacil tank mixtures in no-till cotton. Weed Technol 25:310315 Google Scholar
Westra, EP (2012) Adsorption, Leaching, and Dissipation of Pyroxasulfone and Two Chloroacetamide Herbicides. . Fort Collins, CO: Colorado State University. 69 pGoogle Scholar
Williams, MM, Boerboom, CM, Rabaey, TL (2010) Significance of atrazine in sweet corn weed management systems. Weed Technol 24:139142 Google Scholar