Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:06:19.530Z Has data issue: false hasContentIssue false

Sulfentrazone and Carfentrazone Accelerate Broadleaf Weed Control with Metsulfuron

Published online by Cambridge University Press:  20 January 2017

James T. Brosnan*
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Science Building, 2431 Joe Johnson Drive, Knoxville, TN 37996
Gregory K. Breeden
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Science Building, 2431 Joe Johnson Drive, Knoxville, TN 37996
Gerald M. Henry
Affiliation:
Texas Tech University, 15th and Detroit, Room 259, Mail Stop 2122, Lubbock, TX 79409
Franklin R. Walls
Affiliation:
FMC Corporation, 501 Parkwood Lane, Goldsboro, NC 27530
*
Corresponding author's E-mail: [email protected]

Abstract

Ground ivy and khakiweed are troublesome broadleaf weeds of warm-season turfgrass. Field studies were conducted in Tennessee (TN) and Texas (TX) from 2008 to 2010 to evaluate the efficacy of sulfentrazone plus metsulfuron and carfentrazone plus metsulfuron tank mixtures compared with metsulfuron alone for control of ground ivy and khakiweed. In TN, sulfentrazone plus metsulfuron and carfentrazone plus metsulfuron provided accelerated control of ground ivy compared with metsulfuron alone. Over a 2-yr period, ground ivy control with metsulfuron at 10, 21, and 42 g ai ha−1 ranged from 0 to 5% 7 d after treatment (DAT) and 12 to 60% 14 DAT. Ground ivy control with mixtures of sulfentrazone plus metsulfuron ranged from 40 to 72% 7 DAT and 87 to 100% 14 DAT. Similarly, carfentrazone plus metsulfuron controlled ground ivy 5 to 32% 7 DAT and 23 to 93% 14 DAT. In TX, carfentrazone plus metsulfuron and sulfentrazone plus metsulfuron controlled khakiweed greater than metsulfuron alone 7 and 14 DAT as well. Few differences in ground ivy and khakiweed control were detected 56 DAT because metsulfuron applied alone at 21 g ai ha−1 controlled both weeds > 77%, similar to each mixture. These data indicate that when applied in mixtures, sulfentrazone and carfentrazone accelerate ground ivy and khakiweed control with metsulfuron but do not affect long-term efficacy.

Glechoma hederacea y Alternanthera pungens son malezas problemáticas de hoja ancha en céspedes de época cálida. En 2008 y 2010 se realizaron estudios de campo en Tennessee (TN) y Texas (TX) para evaluar la eficacia de mezclas en tanque de sulfentrazone más metsulfuron y carfentrazone más metsulfuron, comparadas con solo metsulfuron, para el control de G. hederacea y A. pungens. En TN, sulfentrazone más metsulfuron y carfentrazone más metsulfuron proporcionaron un control acelerado de G. hederacea en comparación con metsulfuron solo. A lo largo de un período de dos años, el control de G. hederacea con metsulfuron a 10, 21 y 42 g ia ha−1 varió de 0 a 5% 7 días después del tratamiento (DAT) y de 12 a 60% 14 DAT. El control de G. hederacea con mezclas de sulfentrazone más metsulfuron varió de 40 a 72% 7 DAT y de 87 a 100% 14 DAT. Similarmente, carfentrazone más metsulfuron controlaron la G. hederacea de 5 a 32% 7 DAT y de 23 a 93% 14 DAT. En TX, carfentrazone más metsulfuron y sulfentrazone más metsulfuron controlaron A. pungens mejor que metsulfuron por sí solo, también a los 7 y 14 DAT. Pocas diferencias en el control de G. hederacea y A. pungens fueron detectas a los 56 DAT, mientras metsulfuron aplicado sólo a 21 g ia ha−1 controló ambas malezas >77%, similar al control con cada mezcla. Estos datos indican que cuando se aplican en mezclas con metsulfuron, sulfentrazone y carfentrazone aceleran el control de G. hederacea y A. pungens pero no afectan su eficacia a largo plazo.

Type
Notes
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2008. Manor product label. Burr Ridge, IL NuFarm Americas Inc. Pp. 16.Google Scholar
Anonymous, . 2010. Blindside product label. Philadelphia, PA FMC Corporation. Pp. 14.Google Scholar
Askew, S. D. 2010. Perennial ryegrass competition affects bermudagrass health. Golf Course Mgmt. 78:96102.Google Scholar
Brosnan, J. T. and Breeden, G. K. 2008a. Experimental Combinations of Sulfentrazone and Metsulfuron for Postemergence Broadleaf Weed Control. Knoxville, TN 2008 University of Tennessee Turfgrass Weed Science Annual Research Report. Pp. 9193.Google Scholar
Brosnan, J. T. and Breeden, G. K. 2008b. Experimental Combinations of Carfentrazone and Metsulfuron for Postemergence Broadleaf Weed Control. Knoxville, TN 2008 University of Tennessee Turfgrass Weed Science Annual Research Report. Pp. 8183.Google Scholar
Dirks, J. T., Johnson, W. G., Smeda, R. J., Wiebold, W. J., and Massey, R. E. 2000. Use of sulfentrazone in no-till, narrow-row, glyphosate resistant cotton. Weed Sci. 48:628639.Google Scholar
Elmore, M. T., Brosnan, J. T., Kopsell, D. A., and Breeden, G. K. 2011. Methods of assessing bermudagrass (Cynodon dactylon L.) responses to HPPD inhibiting herbicides. Crop Sci. 51:28402845.Google Scholar
Hephner, A. J., Cooper, T., Beck, L. L., and Henry, G. M. 2012. Sequential postemergence applications for the control of khakiweed in bermudagrass turf. HortScience. 47:434436.Google Scholar
Kells, J. J., Meggitt, W. F., and Penner, D. 1984. Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143149.Google Scholar
Kohler, E. A., Throssell, C. S., and Reicher, Z. J. 2004. Cultural and chemical control of ground ivy (Glechoma hederacea). HortScience. 39:11481152.Google Scholar
Kopec, D. M., Gilbert, J. J., and Pessarakli, M. 2004. Penoxsulam as a Potential Post-emergence for Khakiweed (Alternanthera pungens). Univ. of Arizona Turfgrass and Ornamental Research Report. http://cals.arizona.edu/pubs/crops/az1359. Accessed: February 7, 2011.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1998. Sulfentrazone for weed control in soybean (Glycine max). Weed Technol. 12:684689.Google Scholar
Lewis, D. F., McElroy, J. S., Sorochan, J. C., Mueller, T. C., Samples, T. J., and Breeden, G. K. 2010. Efficacy and safening of aryloxyphenoxypropionate herbicides when tank-mixed with triclopyr for bermudagrass control in zoysiagrass turf. Weed Technol. 24:489494.Google Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
Ohmes, G. A., Hayes, R. M., and Mueller, T. C. 2000. Sulfentrazone dissipation in a Tennessee soil. Weed Technol. 14:100105.Google Scholar
Reicher, Z. J. and Weisenberger, D. V. 2007. Herbicide selection and application timing in the fall affects ground ivy control. Applied Turfgrass Science (DOI:10.1094/ATS-2007-0831-01-RS).Google Scholar
Senseman, S. A., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. Pp. 11, 9495, 217–228.Google Scholar
Sholedice, F. and Renz, M. 2006. Khakiweed. New Mexico State Univ. O & T Guide W-8. Las Cruces, NM Cooperative Extension Service, College of Agriculture and Home Economics. Pp. 12.Google Scholar
Umeda, K. 2008. Evaluation of Herbicides for Khakiweed Control. Tucson, AZ Univ. of Arizona Turfgrass, Landscape, and Urban IPM Research Summary. Pp. 2529.Google Scholar
Willis, J. B., Askew, S. D., and McElroy, J. S. 2007. Improved white clover control with mesotrione by tank-mixing bromoxynil, carfentrazone, and simazine. Weed Technol. 21:739743.Google Scholar
Yelverton, F. H., Hoyle, J. A., Gannon, T. W., and Warren, L. S. 2009. Plant counts, digital image analysis, and visual ratings for estimating weed control in turf: Are they correlated? Proc. South. Weed Sci. Soc. 62:399.Google Scholar