Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T11:18:09.477Z Has data issue: false hasContentIssue false

Single and Sequential Applications of Tribenuron on Broadleaf Weed Control and Crop Response in Tribenuron-Resistant Sunflower

Published online by Cambridge University Press:  20 January 2017

Amar S. Godar
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
Phillip W. Stahlman*
Affiliation:
Agricultural Research Center, Kansas State University, Hays, KS 67601
J. Anita Dille
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506
*
Corresponding author's E-mail: [email protected]

Abstract

Field experiments were conducted near Hays, KS in 2007 and 2008 to evaluate the effects of single and sequential postemergent applications of tribenuron on broadleaf weed control and crop response in tribenuron-resistant sunflower. Weeds were acetolactate-synthase–susceptible biotypes of kochia, puncturevine, Russian thistle, and tumble pigweed in 2007 and puncturevine, redroot pigweed, and tumble pigweed in 2008. Tribenuron at 18 g ai ha−1 applied early POST with methylated seed oil (MSO) provided > 96% control of all species in 2007 and 92 and 99% control of redroot pigweed and puncturevine, respectively, but only 69% control of tumble pigweed in 2008. Early-POST tribenuron at 9 g ha−1 and late-POST tribenuron at 18 g ha−1 generally provided less weed control compared to early-POST tribenuron at 18 g ha−1. Sequential applications slightly improved redroot pigweed and tumble pigweed control in 2008 compared to single applications of tribenuron. Some tribenuron treatments caused transitory crop injury, but imazamox at 35 g ha−1 caused 24 to 44% crop injury at 7 d after treatment and permanent crop stunting in 2007. Significant yield losses occurred with imazamox and single treatments of tribenuron in 2008. Collectively, tribenuron at 18 g ha−1 alone can provide satisfactory control of the evaluated broadleaf weed species when applied to appropriate weed sizes, and this rate does not cause significant injury to tribenuron-resistant sunflower, regardless of the crop size.

En 2007 y 2008, se realizaron experimentos de campo cerca de Hays, KS para evaluar los efectos de tribenuron en aplicaciones postemergentes sencillas y secuenciadas para el control de maleza de hoja ancha y la respuesta de girasol resistente a tribenuron. La maleza susceptible a ALS fueron biotipos de Kochia scoparia, Tribulus terrestris, Salsola iberica y Amaranthus albus en 2007 y Tribulus terrestris, Amaranthus retroflexus y A. albus en 2008. Tribenuron en 18 g ia ha−1 aplicado en postemergencia temprana con aceite de semilla metilado (MSO), proporcionó en 2007 un control >96% en todas las especies y 92 y 99% de control en Amaranthus retroflexus y Tribulus terrestris, respectivamente; sin embargo, en 2008 únicamente ejerció 69% de control en Amaranthus albus. El tribenuron en postemergencia temprana en 9 g ha−1 y postemergencia tardía en 18 g ha−1, generalmente proporcionaron menos control de maleza en comparación con el mismo herbicida aplicado en postemergencia temprana en 18 g ha−1. Las aplicaciones secuenciadas de este herbicida mejoraron ligeramente el control de Amaranthus retroflexus y A. albus en 2008, en comparación con aplicaciones sencillas. Algunos tratamientos de tribenuron causaron daños transitorios al cultivo, pero imazamox en 35 g ha−1 causó de 24 a 44% de daño 7 días después del tratamiento (DAT) y permanente achaparramiento del cultivo en 2007. En 2008, pérdidas significativas de rendimiento ocurrieron con imazamox y tratamientos sencillos de tribenuron. En su conjunto, tribenuron en 18 g ha−1 puede proporcionar un control satisfactorio de las especies de maleza de hoja ancha evaluadas, cuando se aplica al tamaño apropiado de la maleza y esta dosis no daña significativamente al girasol resistente a tribenuron, indistintamente del tamaño del cultivo.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2009. Optimize the DuPont™ ExpressSun® trait system with Express® herbicide. http://www2.dupont.com/Production_Agriculture/en_US/assets/downloads/pdfs/K-15031.pdf. Accessed: July 5, 2010.Google Scholar
Busi, R. and Powels, S. B. 2009. Evolution of glyphosate resistance in Lolium rigidium population by glyphosate selection at sublethal doses. Heredity 103:318325.CrossRefGoogle Scholar
Dale, T. M. 2000. Application Method and Adjuvant Effects on Low-Dose Postemergence Herbicide Efficacy in Sugarbeet (Beta vulgaris). . Fargo, ND North Dakota State University. 57 p.Google Scholar
Duke, S. O. Overview of herbicide mechanism of action. Environ. Health Perspect. 1990. 87:263271.CrossRefGoogle Scholar
Gressel, J. 2009. Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci. 65:11641173.CrossRefGoogle ScholarPubMed
Harbour, H. D., Edwards, M. T., Rupp, R. N., Meredith, J. H., and Hoeft, E. H. 2007. Dupont ExpressSun® trait with pioneer ‘63N81’ NuSun sunflower hybrid and Dupont herbicides systems. Proc. North Central Weed Sci. Soc. Abstr. 62:2.Google Scholar
Howatt, K. A. and Endres, G. J. 2006. Herbicide-resistant sunflower (Helianthus annuus) response to soil residues of ALS-inhibiting herbicides. Weed Technol. 20:6773.CrossRefGoogle Scholar
Johnson, B. J. 1971. Effect of weed competition on sunflowers. Weed Sci. 19:378380.CrossRefGoogle Scholar
Jones, M. A. and Christians, N. E. 2007. Mesotrione controls creeping bentgrass (Agrostis stolonifera) in Kentucky bluegrass. Weed Technol. 21:402405.CrossRefGoogle Scholar
Lamey, H. A., McMullen, M. P., Glogoza, P. K., Zollinger, R. K., Lueke, J. L., and Berglund, D. R. 1998. 1997 Sunflower grower survey of pest problems and pesticide use in Kansas, Minnesota, North Dakota, and South Dakota. North Dakota State University Cooperative Extension Service. http://www.ag.ndsu.nodak.edu/aginfo/entomology/nd_pmc/Sunflower_GS/weed.htm. Accessed: July 6, 2010.Google Scholar
Miller, J. F. and Al-Khatib, K. 2004. Registration of two oilseed sunflower genetic stocks, SURES-1 and SURES-2 resistant to tribenuron herbicide. Crop Sci. 44:10371038.CrossRefGoogle Scholar
Miller, S. D. and Alford, C. 2000. Weed control with sulfentrazone in sunflower. Proc. North Central Weed Sci. Soc. Abstr. 55:94.Google Scholar
Peterson, D. E. 1999. The impact of herbicide-resistant weeds on Kansas agriculture. Weed Technol. 13:632635.CrossRefGoogle Scholar
Shaner, D. L. 2000. The impact of glyphosate-resistant crops on the use of other herbicides and on resistance management. Pest Manag. Sci. 56:320326.3.0.CO;2-B>CrossRefGoogle Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle ScholarPubMed
Thompson, C., Oslon, B., Schlegel, A., and Holman, J. 2007. Weed control in ‘ExpressSun’ sunflower, pro's and con's. Proc. North Central Weed Sci. Soc. Abstr. 62:98.Google Scholar
Zimdahl, R. L. 1999. Fundamentals of Weed Science. 2nd ed. San Diego, CA Academic.Google Scholar