Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T06:01:21.310Z Has data issue: false hasContentIssue false

Seed Retention of Palmer amaranth (Amaranthus palmeri) and Barnyardgrass (Echinochloa crus-galli) in Soybean

Published online by Cambridge University Press:  18 July 2017

Lauren M. Schwartz-Lazaro*
Affiliation:
Postdoctoral Research Associate, Graduate Research Assistant, and Professor, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jeremy K. Green
Affiliation:
Postdoctoral Research Associate, Graduate Research Assistant, and Professor, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Postdoctoral Research Associate, Graduate Research Assistant, and Professor, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
*Corresponding author’s E-mail: [email protected]

Abstract

Harvest weed seed control is an alternative non-chemical approach to weed management that targets escaped weed seeds at the time of crop harvest. Relatively little is known on how these methods will work on species in the US. Two of the most prominent weeds in soybean production in the midsouthern US are Palmer amaranth and barnyardgrass. Typically, when crop harvesting occurs the weed seed has already either shattered or is taken into the combine and may be redistributed in the soil seedbank. This causes further weed seed spread and may contribute to the addition of resistant seeds in the seedbank. There is little research on how much seed is retained on different weed species at or beyond harvest time. Thus, the objective of this study was to determine the percentage of total Palmer amaranth and barnyardgrass seed production that was retained on the plant during delayed soybean harvest. Retained seed over time was similar between 2015 and 2016, but was significantly different between years for only Palmer amaranth. Seed retention did not differ between years for either weed species. Palmer amaranth and barnyardgrass retained 98 and 41% of their seed at soybean maturity and 95 and 32% of their seed one month after soybean maturity, respectively. Thus, this research indicates that if there are escaped Palmer amaranth plants and soybean is harvested in a timely manner, most seed will enter the combine and offer potential for capture or destruction of these seeds using harvest weed seed control tactics. While there would be some benefit to using HWSC for barnyardgrass, the utility of this practice on mitigating herbicide resistance would be less pronounced than that of Palmer amaranth because of the reduced seed retention or early seed shatter.

Type
Weed Biology and Competition
Copyright
© Weed Science Society of America, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee

References

Literature Cited

Bagavathiannan, MV, Norsworthy, JK, Smith, KL, Neve, P (2011) Seed production of barnyardgrass (Echinochloa crus-galli) in response to time of emergence in cotton and rice. J Agric Sci 150:717724 Google Scholar
Bensch, CN, Horak, MJ, Peterson, D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (Palmer amaranth), and common waterhemp (A. rudis) in soybean. Weed Sci 51:3743 Google Scholar
Bosnic, AC, Swanton, CJ (1997) Influence of barnyardgrass (Echinochloa crus-galli) time of emergence and density on corn (Zea mays). Weed Sci 45:276282 CrossRefGoogle Scholar
Burton, NR, Beckie, HJ, Willenborg, CJ, Shirtliffe, SJ, Schoneau, JJ, Johnson, EN (2016) Evaluating seed shatter of economically important weed species. Weed Sci 64:673682 Google Scholar
Dalley, CD, Kells, JJ, Renner, KA (2004) Effect of glyphosate application timing and row spacing on weed growth in corn (Zea mays) and soybean (Glycine max). Weed Technol 18:177182 Google Scholar
Goplen, JJ, Shaeffer, CC, Becker, RL, Coulter, JA, Breitenbach, FR, Behnken, LM, Johnson, GA, Gunsolus, JL (2016) Giant ragweed (Ambrosia trifida) seed production and retention in soybean and field margins. Weed Technol 30:246253 CrossRefGoogle Scholar
Heap, I (2016) The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed December 7, 2016Google Scholar
Jha, P, Norsworthy, JK, Bridges, W, Riley, MB (2008) Influence of glyphosate timing and row width on Palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci 56:408415 Google Scholar
Keeley, PE, Carter, CH, Thullen, RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199204 CrossRefGoogle Scholar
Massinga, RA, Currie, RS, Horak, MJ, Boyer, J Jr (2001) Interference of Palmer amaranth in corn. Weed Sci 49:202208 Google Scholar
Nordby, D, Hartzler, B, Bradley, K (2007) Biology and Management of Waterhemp. West Lafayette, IN: Purdue Extension GWC-13Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagavathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: evidence supporting a zero-threshold strategy. Weed Sci 62:237249 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 Google Scholar
Schwartz, LM, Gibson, DJ, Gage, KL, Matthews, JL, Jordan, DL, Owen, MDK, Shaw, DR, Weller, SC, Wilson, RG, Young, BG (2015) Seedbank and field emergence of weeds in glyphosate-resistant cropping systems in the United States. Weed Sci 63:425439 Google Scholar
Schwartz, LM, Norsworthy, JK, Young, BG, Bradley, KW, Kruger, GR, Davis, VM, Steckel, LE, Walsh, MJ (2016) Tall waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) seed production and retention at soybean maturity. Weed Technol 30:284290 CrossRefGoogle Scholar
Sellers, BA, Smeda, RJ, Johnson, WG, Kendig, JA, Ellersieck, MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329333 Google Scholar
Swanton, CJ, Weise, SF (1991) Integrated weed management: the rationale and approach. Weed Technol 5:657663 Google Scholar
Vail, GD, Oliver, LR (1993) Barnyardgrass (Echinochloa crus-gralli) interference in soybeans (Glycine max). Weed Technol 7:220225 Google Scholar
Walsh, MJ, Newman, P, Powles, SB (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431436 CrossRefGoogle Scholar
Walsh, MJ, Powles, SB (2014) High seed retention at maturity of annual weeds infesting crop fields highlights the potential for harvest weed seed control. Weed Technol 28:486493 CrossRefGoogle Scholar
Ward, SM, Webster, TM, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri). Weed Technol 27:1227 CrossRefGoogle Scholar