Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T17:06:54.415Z Has data issue: false hasContentIssue false

Seed Production and Control of Sicklepod (Senna obtusifolia) and Pitted Morningglory (Ipomoea lacunosa) with 2,4-D, Dicamba, and Glyphosate Combinations

Published online by Cambridge University Press:  20 January 2017

Ramon G. Leon*
Affiliation:
West Florida Research and Education Center, University of Florida, Jay, FL 32565
Jason A. Ferrell
Affiliation:
Agronomy Department, University of Florida, Gainesville, FL 32611
Brent A. Sellers
Affiliation:
Range Cattle Research and Education Center, Ona, FL 36865
*
Corresponding author's E-mail: [email protected].

Abstract

Sicklepod and pitted morningglory are two of the most important weed species in row-crop production in the southeastern United States. The upcoming introduction of soybean and cotton varieties resistant to 2,4-D and dicamba will increase the reliance on these auxinic herbicides. However, it is not clear how these herbicides will affect sicklepod and pitted morningglory control. Field experiments were conducted in 2013 and 2014 in Jay, FL to determine whether 2,4-D (560 and 1,120 g ae ha−1), dicamba (420 and 840 g ae ha−1), and glyphosate (1,060 g ae ha−1) alone or in combination applied when weed shoots were 11 (early POST [EPOST]) and 22 (late POST [LPOST]) cm long effectively control and prevent seed production of sicklepod and pitted morningglory. LPOST provided more effective control of sicklepod than EPOST. This was attributed to emergence of sicklepod seedlings after the EPOST application. When glyphosate was tank mixed with 2,4-D or dicamba, sicklepod control was higher (78 to 89% and 87 to 98% in 2013 and 2014, respectively) than for single-herbicide treatments (45 to 77% and 38 to 80% in 2013 and 2014, respectively) 6 wk after treatment (WAT). Pitted morningglory control was not affected by application timing, and 2,4-D provided 91 to 100% 6 WAT, which was equivalent to treatments with tank mixtures containing glyphosate. Dicamba applied at 420 g ha−1 had the lowest pitted morningglory control (44 to 70% and 82 to 86% in 2013 and 2014, respectively). Sicklepod and pitted morningglory plants that survived and recovered from herbicide treatments produced the same number of viable seeds as nontreated plants in most treatments. The results of the present study indicated that the use of 2,4-D and dicamba alone will not provide adequate extended control of sicklepod, and the use of tank mixtures that combine auxinic herbicides with glyphosate or other POST herbicides will be necessary to manage sicklepod adequately in 2,4-D- or dicamba-resistant soybean and cotton. Because sicklepod plants that survived a single herbicide application are capable of producing abundant viable seeds, integrated approaches that include PRE herbicides and sequential POST control options may be necessary to ensure weed seed bank reductions.

Senna obtusifolia e Ipomoea lacunosa son dos de las especies de malezas más importantes en la producción de cultivos en hileras en el sureste de los Estados Unidos. Próximamente, la introducción de variedades de soja y algodón resistentes a 2,4-D y dicamba aumentará la dependencia en estos herbicidas auxínicos. Sin embargo, no está claro cómo estos herbicidas afectarán el control de S. obtusifolia e I. lacunosa. En 2013 y 2014, se realizaron experimentos de campo en Jay, FL para determinar si 2,4-D (560 y 1,120 g ae ha−1), dicamba (420 y 840 g ae ha−1), y glyphosate (1,060 g ae ha−1) solos o en combinación, aplicados cuando la parte aérea de las malezas alcanzó 11 (POST temprana [EPOST]) y 22 (POST tardía [LPOST]) cm de largo, controlan efectivamente S. obtusifolia e I. lacunosa y previenen la producción de semilla. LPOST brindó un control más efectivo de S. obtusifolia que EPOST. Esto fue atribuido a la emergencia de plántulas de S. obtusifolia después de la aplicación EPOST. Cuando glyphosate fue mezclado en tanque con 2,4-D o dicamba, el control de S. obtusifolia fue superior (78 a 89% y 87 a 98% en 2013 y 2014, respectivamente) que tratamientos con un solo herbicida (45 a 77% y 38 a 80% en 2013 y 2014, respectivamente) 6 semanas después del tratamiento (WAT). El control de I. lacunosa no fue afectado por el momento de aplicación, y 2,4-D brindó 91 a 100% de control 6 WAT, lo cual fue equivalente a los tratamientos con mezclas en tanque que contenían glyphosate. Dicamba aplicado a 420 g ha−1 tuvo el menor control de I. lacunosa (44 a 70% y 82 a 86% en 2013 y 2014, respectivamente). Las plantas de S. obtusifolia e I. lacunosa que sobrevivieron y se recuperaron de los tratamientos de herbicidas produjeron el mismo número de semillas viables que las plantas sin tratamiento en la mayoría de los tratamientos. Los resultados del presente estudio indicaron que el uso de sólo 2,4-D y dicamba no brindará un control adecuado extenso de S. obtusifolia, y el uso de mezclas en tanque que combinen herbicidas auxínicos con glyphosate u otros herbicidas POST será necesario para manejar adecuadamente S. obtusifolia en soja y algodón resistentes a 2,4-D o dicamba. Debido a que las plantas de S. obtusifolia que sobrevivieron a aplicaciones sencillas de herbicidas son capaces de producir una abundante cantidad de semillas viables, estrategias integradas que incluyan herbicidas PRE y seguidos de opciones de control POST podrían ser necesarias para asegurar reducciones en el banco de semillas de malezas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor for this paper: Prashant Jha, Montana State University.

References

Literature Cited

Anonymous (2009) Roundup WeatherMax® herbicide specimen label. Monsanto Company, St. Louis, MO. 54 pGoogle Scholar
Anonymous (2010) Clarity® herbicide specimen label. BASF Corporation, Research Triangle Park, NC. 22 pGoogle Scholar
Anonymous (2013) 2, 4-D amine weed killer specimen label. United Crop Protection Alliance, Eagan, MN. 8 pGoogle Scholar
Barker, MA, Thompson, L Jr., Godley, FM (1984) Control of annual morningglory (Ipomoea spp.) in soybeans (Glycine max). Weed Sci 32:813818 Google Scholar
Behrens, MR, Mutlu, N, Chakraborty, S, Dumitru, R, Jiang, WZ, LaVallee, BJ, Herman, PL, Clemente, TE, Weeks, DP (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:11851188 Google Scholar
Berger, ST (2014) Palmer amaranth competitive physiology. Ph.D Dissertation. Gainesville, FL: University of Florida. 72 pGoogle Scholar
Bosza, RC, Oliver, LR, Driver, TL (1989) Intraspecific and interspecific sicklepod (Cassia obtusifolia) interference. Weed Sci 37:670673 Google Scholar
Buchanan, GA, Burns, ER (1971) Weed competition in cotton. I. Sicklepod and tall morningglory. Weed Sci 19:576579 Google Scholar
Creel, JM Jr., Hoveland, CS, Buchanan, GA (1968) Germination, growth, and ecology of sicklepod. Weed Sci 16:396400 Google Scholar
Crowley, RH, Buchanan, GA (1978) Competition of four morningglory (Ipomoea spp.) species with cotton (Gossypium hirsutum). Weed Sci 26:484488 Google Scholar
Crowley, RH, Buchanan, GA (1982) Variations in seed production and the response to pests of morningglory (Ipomoea) species and smallflower morningglory (Jacquemontia tamnifolia). Weed Sci 30:187190 Google Scholar
Culpepper, AS, Gimenez, AE, York, AC, Batts, RB, Wilcut, JW (2001) Glyphosate and 2, 4-DB mixtures in glyphosate-resistant soybean (Glycine max). Weed Technol 15:5661 Google Scholar
Edwards, CB, Jordan, DL, Owen, MDK, Dixon, PM, Young, BG, Wilson, RG, Weller, SC, Shaw, DR (2014) Benchmark study on glyphosate-resistant crop systems in the United States. Economics of herbicide resistance management practices in a 5 year field-scale study. Pest Manag Sci 70:19241929 Google Scholar
Egley, GH, Chandler, JM (1983) Longevity of weed seeds after 5.5 years in the Stoneville 50-year buried-seed study. Weed Sci 31:264270 Google Scholar
Foresman, C, Glasgow, L (2008) US grower perceptions and experiences with glyphosate-resistant weeds. Pest Manag Sci 64:388391 Google Scholar
Gomes, LF, Chandler, JM, Vaughan, CE (1978) Aspects of germination, emergence, and seed production of three Ipomoea taxa. Weed Sci 26:245248 Google Scholar
Heap, I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70:13061315 Google Scholar
Higgins, JM, Whitwell, T, Murdock, EC, Toler, JE (1988) Following applications of acifluorfen, fomesafen, and lactofen. Weed Sci 36:345353 Google Scholar
Isaacs, MA, Murdock, EC, Toler, JE, Wallace, SU (1989) Effects of late-season herbicide applications on sicklepod (Cassia obtusifolia) seed production and viability. Weed Sci 37:761765 Google Scholar
Joseph, DD (2014) Evaluation of 2, 4-D and dicamba based herbicide programs for weed control in soybean. . Clemson, SC: Clemson University. 113 pGoogle Scholar
Lancaster, SH, Jordan, DL, Spears, JF, York, AC, Wilcut, JW, Monks, DW, Batts, RB, and Branderburg, RL (2005) Sicklepod (Senna obtusifolia) control and seed production after 2, 4-DB applied alone and with fungicides or insecticides. Weed Technol 16:451455 Google Scholar
Leon, RG, Ferrell, JA, Brecke, BJ (2014) Impact of exposure to 2, 4-D and dicamba on peanut injury and yield. Weed Technol 28:465470 Google Scholar
Merchant, RM, Sosnoskie, LM, Culpepper, AS, Steckel, LE, York, AC, Braxton, B, Ford, JC (2013) Weed response to 2, 4–D, 2, 4-DB, and dicamba applied alone or with glufosinate. J Cotton Sci 17:212218 Google Scholar
Norsworthy, JK, Griffith, G, Griffin, T, Bagathiannan, M, Gbur, EE (2014) In-field movement of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and its impact on cotton lint yield: Evidence supporting a zero-threshold strategy. Weed Sci 62:237249 Google Scholar
Norsworthy, JK, Oliver, LR (2002) Effect of irrigation, soybean (Glycine max) density, and glyphosate on hemp sesbania (Sesbania exaltata) and pitted morningglory (Ipomoea lacunosa) interference in soybean. Weed Technol 16:717 Google Scholar
Ratnayake, S, Shaw, DR (1992) Effects of harvest-aid herbicides on sicklepod (Cassia obtusifolia) seed yield and quality. Weed Technol 6:985989 Google Scholar
Senseman, SA, Oliver, LR (1993) Flowering patterns, seed production, and somatic polymorphism of three weed species. Weed Sci 41:418425 Google Scholar
Shaw, DR, Arnold, JC (2002) Weed control from herbicide combinations with glyphosate. Weed Technol 16:16 Google Scholar
Street, JE, Buchanan, GA, Crowley, RH, McGuire, JA (1981) Influence of cotton (Gossypium hirsutum) densities on competitiveness of pigweed (Amaranthus spp.) and sicklepod (Cassia obtusifolia). Weed Sci 29:253256 Google Scholar
Taylor, SE, Oliver, LR (1997) Sicklepod (Senna obtusifolia) seed production and viability as influenced by late-season postemergence herbicide applications. Weed Sci 45:497501 Google Scholar
Thomas, WE, Pline-Srnic, WA, Viator, RP, Wilcut, JW (2005) Effects of glyphosate application timing and rate on sicklepod (Senna obtusifolia) fecundity. Weed Technol 19:5561 Google Scholar
Webster, TM (2013) Weed survey—Southern states. Proc South Weed Sci Soc 66:275287 Google Scholar
Wehtje, G, Walker, RH (1997) Interaction of glyphosate and 2, 4-DB for the control of selected morningglory (Ipomoea spp.) species. Weed Technol 11:152156 Google Scholar
Wright, TR, Shan, G, Walsh, TA, Lira, JM, Cui, C, Song, P, Zhuang, M, Arnold, NL, Lin, G, Yau, K, Russell, SM, Cicchillo, RM, Peterson, MA, Simpson, DM, Zhou, N, Ponsamuel, J, Zhang, Z (2010) Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci USA 107:2024020245 Google Scholar