Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:59:31.818Z Has data issue: false hasContentIssue false

Responses of an HPPD Inhibitor-Resistant Waterhemp (Amaranthus tuberculatus) Population to Soil-Residual Herbicides

Published online by Cambridge University Press:  20 January 2017

Nicholas E. Hausman
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Patrick J. Tranel
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Dean E. Riechers
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Douglas J. Maxwell
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Lisa C. Gonzini
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
Aaron G. Hager*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected]

Abstract

Field experiments were conducted in 2010 and 2011 at a Mclean County, IL seed corn production field where resistance to foliar-applied 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors was confirmed in waterhemp. Corn herbicides were applied to the soil at 1 and 2 times (1× and 2×, respectively) the recommended field use rate, while soybean herbicides were applied only at 1× the recommended rate. Waterhemp control and density were determined 30 and 60 d after treatment (DAT). In corn, 1× rates of mesotrione, safened and unsafened isoxaflutole formulations, atrazine, and S-metolachlor provided less than 70% control 30 DAT, while control with acetochlor was greater than 80%. One and 2× rates of acetochlor and 2× rates of mesotrione and unsafened isoxaflutole provided the greatest reduction of waterhemp density across years. At 30 DAT in soybean, sulfentrazone, flumioxazin, metribuzin, and pyroxasulfone provided the highest levels of waterhemp control (84 to 92%), as well as the greatest reduction in waterhemp density both years. A dose–response experiment with soil-applied mesotrione was performed under controlled greenhouse conditions using three waterhemp populations: MCR15 (seed collected from the McLean Co. site), NH41 (progeny obtained from the McLean Co. population by an additional generation of mesotrione selection in the greenhouse), and a sensitive (S). Emergence counts 21 DAT revealed higher seedling survival of MCR15 and NH41 at mesotrione rates of 105 g ha−1 or less compared with the sensitive control. Resistant-to-sensitive (R/S) ratios for NH41 and MCR15 were 12.7 and 8.8, respectively. Field results indicate the McLean Co. waterhemp population demonstrates reduced sensitivity to soil-applied HPPD-inhibiting herbicides. This is supported by greenhouse results that demonstrate reduced sensitivity to mesotrione in MCR15 and NH41.

En 2010 y 2011, se realizaron experimentos de campo en el condado McLean, IL, en un campo de producción de maíz para semilla donde se confirmó que había Amaranthus tuberculatus con resistencia a herbicidas de aplicación foliar inhibidores de 4-hydroxyphenulpyruvate dioxygenase (HPPS). Herbicidas para maíz fueron aplicados al suelo a 1 y 2 veces (1× y 2×, respectivamente) las dosis recomendadas de campo, mientras que herbicidas para soya fueron aplicados solamente a la dosis recomendada 1×. El control y la densidad de A. tuberculatus fueron determinados 30 y 60 d después del tratamiento (DAT). En maíz, dosis 1× de mesotrione, isoxaflutole en formulaciones con o sin antídoto, atrazine, y S-metolachlor brindaron menos de 70% de control a 30 DAT, mientras que el control con acetochlor fue superior al 80%. Las dosis de 1 y 2× de acetochlor y las dosis 2× de mesotrione e isoxaflutole sin antídoto brindaron la mayor reducción en la densidad de A. tuberculatus en los dos años. A 30 DAT en soya, sulfentrazone, flumioxazin, metribuzin, y pyroxasulfone brindaron los mayores niveles de control de A. tuberculatus (84 a 92%), además de la mayor reducción en las densidades de esta maleza en ambos años. Se realizó un experimento de respuesta a dosis con mesotrione aplicado al suelo bajo condiciones controladas en invernadero, usando tres poblaciones de A. tuberculatus: MCR15 (semilla colectada en la localidad del condado McLean), NH41 (progenie obtenida de la población del condado McLean después de una generación adicional seleccionada con mesotrione en el invernadero), y una sensible (S). Conteos de emergencia revelaron mayor supervivencia de las plántulas de MCR15 y NH41 a dosis de 105 g ha−1 o menores al compararse con el testigo sensible. Las proporciones de resistente a sensible fueron 12.7 y 8.8 para NH41 y MCR15, respectivamente. Los resultados de campo indican que la población de A. tuberculatus del condado McLean mostró sensibilidad reducida a herbicidas aplicados al suelo inhibidores de HPPD. Esto fue apoyado por los resultados de invernadero que mostraron una sensibilidad reducida a mesotrione en MCR15 y NH41.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bell, M. S., Tranel, P. J., and Hager, A. G. 2009. Introducing quad-stack waterhemp: populations containing individuals resistant to four herbicide modes of action. Proc. North Central Weed Sci. Soc. 64:40.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.CrossRefGoogle Scholar
Buhler, D. D. and Hartzler, R. G. 2001. Emergence and persistence of seed of velvetleaf, common waterhemp, woolly cupgrass, and giant foxtail. Weed Sci. 49:230235.CrossRefGoogle Scholar
Buhler, D. D., Kohler, K. A., and Thompson, R. L. 2001. Weed seed bank dynamics during a five-year crop rotation. Weed Technol. 15:170176.CrossRefGoogle Scholar
Burnside, O. C., Wilson, R. G., Weisberg, S., and Hubbard, K. G. 1996. Seed longevity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Sci. 44:7486.CrossRefGoogle Scholar
Cordes, J. C., Johnson, W. G., Scharf, P., and Smeda, R. J. 2004. Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol. 18:9991005.CrossRefGoogle Scholar
Falk, J. S., Shoup, D. E., Al-Khatib, K. and Peterson, D. E. 2006. Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages. Weed Sci. 54:793799.CrossRefGoogle Scholar
Foes, M. J., Liu, L. X., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Simmons, F. W. 2002a. Common waterhemp (Amaranthus rudis Sauer) management with soil-applied herbicides in soybean (Glycine max (L.) Merr.). Crop Protect. 21:277283.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Simmons, F. W., and Stoller, E. W. 1997. Waterhemp management in agronomic crops. Univ. of Illinois Bulletin. 855:12.Google Scholar
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002b. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.CrossRefGoogle Scholar
Hartzler, R. G., Battles, B., and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci. 52:242245.CrossRefGoogle Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.CrossRefGoogle Scholar
Hausman, N. E., Singh, S., Tranel, P. J., Riechers, D. E., Kaundun, S. S., Polge, N. D., Thomas, D. A., and Hager, A. G. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Manage. Sci. 67:258261.Google Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. www.weedscience.org/in.asp. Accessed February. 8, 2012.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.CrossRefGoogle Scholar
Lally, N. G., Thompson, C. R., and Peterson, D. 2010. Palmer amaranth differential response to pyrasulfotole & bromoxynil. Proc. North Central Weed Sci. Soc. 65:68.Google Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.CrossRefGoogle Scholar
Luscombe, B. M. and Pallett, K. E. 1996. Isoxaflutole for weed control in maize. Pestic. Outlook. 7:2932.Google Scholar
McMullan, P. M. and Green, J. M. 2011. Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technol. 25:514518.CrossRefGoogle Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.CrossRefGoogle Scholar
Sauer, J. 1955. Revision of the dioecious amaranths . Madrono. 13:546.Google Scholar
Sauer, J. 1957. Recent migration and evolution of the dioecious Amaranths . Evolution. 11:1131.CrossRefGoogle Scholar
Saxton, A. M. 1998. A macro for converting mean separation output to letter groupings in Proc Mixed. Proc. Annual SAS Users Group Int. 23:12431246.Google Scholar
Schuster, C. L. and Smeda, R. J. 2007. Management of Amaranthus rudis S. in glyphosate-resistant corn (Zea mays L.) and soybean (Glycine max L. Merr.). Crop Protect. 26:14361443.CrossRefGoogle Scholar
Shoup, D. E. and Al-Khatib, K. 2004. Control of protoporphyrinogen oxidase inhibitor-resistant common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol. 18:332340.CrossRefGoogle Scholar
Steckel, L. E. and Sprague, C. L. 2004. Common waterhemp (Amaranthus rudis) interference in corn. Weed Sci. 52:359364.CrossRefGoogle Scholar
Steckel, L. E., Sprague, C. L., and Hager, A. G. 2002. Common waterhemp (Amaranthus rudis) control in corn (Zea mays) with single preemergence and sequential applications of residual herbicides. Weed Technol. 16:755761.CrossRefGoogle Scholar
Steckel, L. E., Sprague, C. L., Hager, A. G., Simmons, F. W., and Bollero, G. A. 2003. Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Sci. 51:898903.CrossRefGoogle Scholar
Sweat, J. K., Horak, M. J., Peterson, D. E., Lloyd, R. W., and Boyer, J. E. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technol. 12:315321.CrossRefGoogle Scholar
Vyn, J. D., Swanton, C. J., Weaver, S. E., and Sikkema, P. H. 2006. Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post-emergence herbicides in Zea mays L. (maize). Crop Protect. 25:10511056.CrossRefGoogle Scholar
Wichert, R. A., Townson, J. K., Bartlett, D. W., and Foxon, G. A. 1999. Technical review of mesotrione, a new maize herbicide. Proc. Br. Crop Prot. Conf. Weeds. 105112.Google Scholar