Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T06:38:39.788Z Has data issue: false hasContentIssue false

Response of Sweet Corn to Pyroxasulfone in High-Organic-Matter Soils

Published online by Cambridge University Press:  20 January 2017

Dennis C. Odero*
Affiliation:
University of Florida Everglades Research and Education Center, Belle Glade, FL 33430
Alan L. Wright
Affiliation:
University of Florida Everglades Research and Education Center, Belle Glade, FL 33430
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted in 2011 and 2012 in Belle Glade, FL to evaluate the response of sweet corn and weed control to pyroxasulfone on high-organic-matter soils in the Everglades Agricultural Area (EAA) of southern Florida with the use of dose-response curves. Pyroxasulfone was applied PRE at 31.25, 62.5, 125, 250, 500, and 1,000 g ai ha−1 on soil with 80% organic matter. Dose-response curves based on a three-parameter log-logistic model were used to determine pyroxasulfone rate required to provide 90% control (ED90) of spiny amaranth, common lambsquarters, and common purslane in sweet corn. The ED90 values for spiny amaranth, common lambsquarters, and common purslane control were 209, 215, and 194 g ha−1 of pyroxasulfone, respectively, at 21 d after treatment (DAT). At 42 DAT, the ED90 values for spiny amaranth, common lambsquarters, and common purslane control were 217, 271, and 234 g ha−1 of pyroxasulfone, respectively. Sweet corn yield increased with increasing rates of pyroxasulfone. An estimated 214 g ha−1 of pyroxasulfone was required to maintain sweet corn yield at 90% level of the weed-free yield. In addition, pyroxasulfone did not result in sweet corn injury. These results indicate that pyroxasulfone can provide effective weed control in sweet corn on high-organic-matter soils of the EAA.

Se realizaron experimentos de campo en 2011 y 2012 en Belle Glade, FL para evaluar la respuesta del maíz dulce y el control de malezas a pyroxasulfone en suelos con alta contenido de materia orgánica en el Área Agrícola de Everglades (EAA) en el sur de Florida, usando curvas de respuesta a dosis. Se aplicó pyroxasulfone PRE a 31.25, 62.5, 125, 250, 500 y 1,000 g ai ha−1 en suelo con 80% materia orgánica. Se usaron curvas de respuesta a dosis basadas en un modelo log-logístico de tres parámetros para determinar la dosis requerida de pyroxasulfone para obtener 90% de control (ED90) de Amaranthus spinosus, Chenopodium album, y Portulaca oleracea en maíz dulce. Los valores de ED90 para el control de A. spinosus, C. album, y P. oleracea fueron 209, 215 y 194 g ha−1 de pyroxasulfone, respectivamente. El rendimiento del maíz dulce incrementó con dosis crecientes de pyroxasulfone. Se requirió un estimado de 214 g ha−1 de pyroxasulfone para mantener el rendimiento del maíz dulce a un nivel de 90% del rendimiento con cero malezas. Adicionalmente, pyroxasulfone no causó daño al maíz dulce. Estos resultados indican que pyroxasulfone puede brindar control efectivo de malezas en maíz dulce en suelos con alto contenido de materia orgánica en el EAA.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alt, D. 1987. Influence of P- and K-fertilization on yield of different vegetable species. J. Plant Nutr. 10:14291435.Google Scholar
Anonymous. 2012a. Callisto® herbicide. Syngenta Crop Protection, LLC. http://www.syngenta.com/global/corporate/en/products-and-innovation/product-brands/crop-protection/herbicides/Pages/callisto.aspx. Accessed September 1, 2012.Google Scholar
Anonymous. 2012b. Zidua Herbicide Worldwide Technical Brochure, Report No. GL-7001A. Florham Park, NJ BASF The Chemical Company.Google Scholar
Boydston, R. A., Collins, H. P., and Alva, A. K. 2008. Control of volunteer potato (Solanum tuberosum) in sweet corn with mesotrione is unaffected by atrazine and tillage. Weed Technol. 22:654659.Google Scholar
Cousens, R. 1985. A simple model relating yield loss to weed density. Ann. Appl. Biol. 107:239252.Google Scholar
Geier, P. W., Stahlman, P. W., and Frihauf, J. C. 2006. KIH-485 and S-metolachlor efficacy comparisons in conventional and no-tillage corn. Weed Technol. 20:622626.Google Scholar
Gregory, L. S., Porpiglia, P. J., and Chandler, J. M. 2005. Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol. 19:866869.Google Scholar
King, S. R. and Garcia, J. O. 2008. Annual broadleaf control with KIH-485 in glyphosate-resistant furrow irrigated corn. Weed Technol. 22:420424.Google Scholar
King, S. R., Ritter, R. L., Hagood, E. S. Jr., and Menbere, H. 2007. Control of acetolactate synthesis-resistant shattercane (Sorghum bicolor) in field corn with KIH-485. Weed Technol. 21:578582.CrossRefGoogle Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Porpiglia, P. J. 2009. Dose-response curves of KIH-485 for preemergence weed control in corn. Weed Technol. 23:3439.CrossRefGoogle Scholar
Kniss, A. R. and Lyon, D. J. 2011. Winter wheat response to preplant applications of aminocyclopyrachlor. Weed Technol. 25:5157.Google Scholar
Malik, M. S., Norsworthy, J. K., Culpepper, A. S., Riley, M. B., and Bridges, W. Jr. 2008. Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci. 56:588595.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.Google Scholar
[NASS] National Agricultural Statistics Service. 2012. Agricultural Chemical Use Database. http://www.pestmanagement.info/nass/app_statcs3_crop.cfm. Accessed September 1, 2012.Google Scholar
Nurse, R. E., Sikkema, P. H., and Robinson, D. E. 2011. Weed control and sweet maize (Zea mays L.) yield as affected by pyroxasulfone dose. Crop Prot. 30:789793.Google Scholar
Olson, B.L.S., Zollinger, R. K., Thompson, C. R., Peterson, D. E., Jenks, B., Moechnig, M., and Stahlman, P. W. 2011. Pyroxasulfone with and without sulfentrazone in sunflower (Helianthus annuus). Weed Technol. 25:217221.Google Scholar
O'Connell, P. J., Harms, C. T., and Allen, J. R. F. 1998. Metolachlor, S-metolachlor and their role within sustainable weed-management. Crop Prot. 17:207212.Google Scholar
O'Sullivan, J., Zandstra, J., and Sikkema, P. 2002. Sweet corn (Zea mays) cultivar sensitivity to mesotrione. Weed Technol. 16:421425.CrossRefGoogle Scholar
Pinheiro, J. C. and Bates, D. M. 2000. Mixed-Effects Models in S and S-PLUS. New York Springer-Verlag. 530 p.Google Scholar
Porpiglia, P. J., Nakatani, M., and Ueno, R. 2005. KIH-485: a new broad spectrum herbicide. Weed Sci. Soc. Am. Abstr. 45:314.Google Scholar
Porpiglia, P. J., Watanabe, O., Kurts, M., Yamaji, Y., and Honda, H. 2006. KIH-485 potential in southern row crops. South. Weed Sci. Soc. Abstr. 59:43.Google Scholar
R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. Vienna, Austria R Foundation for Statistical Computing. http://www.R-project.org/. Accessed March 20, 2012.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Statist. Software. 12:122.Google Scholar
Schueneman, T. J. and Sanchez, C. A. 1994. Vegetable production in the EAA. Pages 238277 in Bottcher, A. B. and Izuno, F. T., eds. Everglades Agricultural Area (EAA): Water, Soil, Crop, and Environmental Management. Gainesville University Press of Florida.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Shea, P. J. 1989. Role of humified organic matter in herbicide adsorption. Weed Technol. 3:190197.Google Scholar
Snyder, G. H. 1994. Soils of the EAA. Pages 2741 in Bottcher, A. B. and Izuno, F. T., eds. Everglades Agricultural Area (EAA): Water, Soil, Crop, and Environmental Management. Gainesville University Press of Florida.Google Scholar
Snyder, G. H., Burdine, H. W., Crockett, J. R., Gascho, G. J., Harrison, D. S., Kidder, G., Milshoe, J. W., Myhre, D. L., Pate, F. M., and Shih, S. F. 1978. Water table management for organic soil conservation and crop production in the Florida Everglades. Univ. Fla. Bull. 801:1314.Google Scholar
Steele, G. L., Porpiglia, P. J., and Chandler, J. M. 2005. Efficacy of KIH-485 on Texas panicum (Panicum texanum) and selected broadleaf weeds in corn. Weed Technol. 19:866869.Google Scholar
Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., and Shimizu, T. 2009. Action mechanism of a novel herbicide, pyroxasulfone. Pestic. Biochem. Physiol. 95:4755.Google Scholar
Williams, M. M., Boerboom, C. M., and Rabaey, T. L. 2010. Significance of atrazine in sweet corn weed management systems. Weed Technol. 24:139142.Google Scholar
Wright, A. L. and Hanlon, E. A. 2009. Soil structure in Everglades Agricultural Area. Histosols: effects of carbon sequestration and subsidence. SL 301, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences. Gainesville University of Florida.Google Scholar