Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T21:26:19.723Z Has data issue: false hasContentIssue false

Response of Seeded Miscanthus × giganteus to PRE and POST Herbicides

Published online by Cambridge University Press:  20 January 2017

Eric K. Anderson
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Aaron G. Hager
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
DoKyoung Lee
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Damian J. Allen
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907
Thomas B. Voigt*
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].

Abstract

Miscanthus × giganteus cv. Illinois is a high-yielding perennial grass crop being developed for cellulosic biomass production in the United States. It is a sterile cultivar and must be established using plantlets or rhizomes; this asexual propagation is relatively expensive, thereby limiting more widespread acceptance. Perennial, tetraploid, seeded types of M. × giganteus have been developed that could reduce establishment costs, while producing high biomass yields. Weed control during the year of establishment is essential because this grass crop does not compete well with weeds in the establishment year. Greenhouse and field experiments were conducted to identify PRE and POST herbicides that would not adversely affect seeded M. × giganteus emergence or growth. Imazethapyr and quinclorac applied PRE had no negative affect on M. × giganteus growth in the greenhouse with respect to seedling emergence, plant height, observed injury symptoms, or fresh weight. In the field, plant emergence was significantly higher with quinclorac plus atrazine than the nontreated control, and emergence with isoxaflutole plus atrazine was not significantly different from the control. Six herbicides applied POST in the greenhouse showed little or no negative effect on miscanthus growth. In the field, several PRE plus POST herbicide combinations did not negatively affect M. × giganteus growth; however, none of these provided adequate weed control under irrigated conditions. Further evaluation of PRE and POST herbicides is needed to identify robust weed control options that are safe on seeded M. × giganteus.

Miscanthus × giganteus cv. 'Illinois' es una gramínea perenne de alto rendimiento que está siendo desarrollada para la producción de biomasa celulósica en los Estados Unidos. Este cultivar es estéril y debe ser establecido usando rebrotes o rizomas. Esta propagación asexual es relativamente costosa, lo que limita su amplia aceptación. Se han desarrollado tipos de M. × giganteus que son perennes, tetraploides, y que producen semilla, lo que podría reducir los costos de establecimiento, al tiempo que producen altos rendimientos de biomasa. El control de malezas durante el año de establecimiento es esencial porque este cultivo gramínea no compite bien con las malezas en el año de establecimiento. Se realizaron experimentos de invernadero y de campo para identificar herbicidas PRE y POST que no afectarían en forma negativa la emergencia y el crecimiento de M. × giganteus a partir de semilla. Imazethapyr y quinclorac aplicados PRE no tuvieron efectos negativos en el crecimiento de M. × giganteus en el invernadero con respecto a la emergencia de plántulas, la altura de planta, los síntomas de daño observados, o el peso fresco. En el campo, la emergencia de plantas fue significativamente mayor con quinclorac más atrazine que en el testigo sin tratamiento, y la emergencia con isoxaflutole más atrazine no fue significativamente diferente del testigo. Seis herbicidas aplicados POST en el invernadero mostraron poco o ningún efecto negativo sobre el crecimiento del M. × giganteus. Sin embargo, ninguno de estos herbicidas brindó un control adecuado de malezas en condiciones de riego. Se necesitan más evaluaciones de herbicidas PRE y POST para identificar opciones robustas para el control de malezas que sean seguras para M. × giganteus establecido a partir de semillas.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, EK, Hager, AG, Voigt, TB, Lee, DK (2014a) Switchgrass and prairie cordgrass response to foliar- and soil-applied herbicides. Weed Technol 28:633645 Google Scholar
Anderson, EK, Lee, DK, Allen, DJ, Voigt, TB (2014b) Agronomic factors in the establishment of tetraploid seeded Miscanthus × giganteus . Glob Change Biol Bioenergy DOI: Google Scholar
Anderson, EK, Voigt, TB, Bollero, GA, Hager, AG (2010) Miscanthus × giganteus response to preemergence and postemergence herbicides. Weed Technol 24:453460 Google Scholar
Anonymous (2010a) Harness supplemental label, for weed control in miscanthus & other non-food perennial bioenergy crops. St. Louis, MO: Monsanto Company Google Scholar
Anonymous (2010b) Harness Xtra supplemental label, for weed control in miscanthus & other non-food perennial bioenergy crops. St. Louis, MO: Monsanto Company Google Scholar
Arundale, RA, Dohleman, FG, Heaton, EA, McGrath, JM, Voigt, TB, Long, SP (2014) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the midwestern USA. Glob Change Biol Bioenergy 6:113 Google Scholar
Boydston, RA, Collins, HP, Fransen, SC (2010) Response of three switchgrass (Panicum virgatum) cultivars to mesotrione, quinclorac, and pendimethalin. Weed Technol 24:336341 Google Scholar
Christian, DG, Yates, NE, Riche, AB (2005) Establishing Miscanthus sinensis from seed using conventional sowing methods. Ind Crop Prod 21:109111 Google Scholar
[EISA] Energy Independence and Security Act of 2007 (2007) Pub. L. No. 110–140, 121 Stat. 1492, 1783–84 (Dec. 19, 2007), 42 U.S.C. § 17381Google Scholar
Curran, WS, Ryan, MR, Matthew, W., Myers, MW, Adler, PR (2012) Effects of seeding date and weed control on switchgrass establishment. Weed Technol 26:248255 Google Scholar
Everman, WJ, Lindsey, AJ, Henry, GM, Glaspie, CF, Phillips, K, McKenney, C (2011) Response of Miscanthus × giganteus and Miscanthus sinensis to postemergence herbicides. Weed Technol 25:398403 Google Scholar
Fransen, SC, Collins, HP, Boydston, RA (2006) Perennial warm-season grasses for biofuels. Pages 147154 in Proceedings of the 36th Western Alfalfa and Forage Symposium. Davis, CA: University of California Cooperative Extension. http://alfalfa.ucdavis.edu/+symposium/proceedings/2006/06–147.pdf. Accessed May 28, 2013Google Scholar
Glowacka, K, Clark, LV, Adhikari, S, Peng, J, Stewart, JR, Nishiwaki, A, Yamada, T, Jørgensen, U, Hodkinson, TR, Gifford, J, Juvik, JA, Sacks, EJ (2015) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. Glob Change Biol Bioenergy 7:386404.Google Scholar
Gordon, DR, Tancig, KJ, Onderdonk, DA, Gantz, CA (2011) Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass Bioenergy 35:7479 Google Scholar
Greef, JM, Deuter, M, Jung, C, Schondelmaier, J (1997) Genetic diversity of European miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol 44:185195 Google Scholar
Heaton, EA, Dohleman, FG, Long, SP (2008) Meeting US biofuel goals with less land: the potential of miscanthus. Glob Change Biol 14:20002014 Google Scholar
Heeter, J, Bird, L (2013) Including alternative resources in state renewable portfolio standards: current design and implementation experience. Energy Policy 61:13881399 Google Scholar
Hodkinson, TR, Renvoize, S (2001) Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull 56:759760 Google Scholar
Kim, SM, Rayburn, AL, Voigt, T, Parrish, A, Lee, DK (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5:225235 Google Scholar
Lewandowski, I, Clifton-Brown, JC, Scurlock, JMO, Huisman, W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209227 Google Scholar
Lewandowski, I, Scurlock, JMO, Lindvall, E, Christou, M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335361 Google Scholar
Li, X, Grey, TL, Blanchett, BH, Lee, RD, Webster, TM, Vencill, WK (2013) Tolerance evaluation of vegetatively established Miscanthus × giganteus to herbicides. Weed Technol 27:735740 Google Scholar
Lockhart, SJ, Howatt, KA (2004) Split applications of herbicides at reduced rates can effectively control wild oat (Avena fatua) in wheat. Weed Technol 18:369374 Google Scholar
Martin, AR, Moomaw, RS, Vogel, KP (1982) Warm-season grass establishment with atrazine. Agron J 74:916920 Google Scholar
Masters, RA, Nissen, SJ, Gaussoin, RE, Beran, DD, Stougaard, RN (1996) Imidazolinone herbicides improve restoration of Great Plains grasslands. Weed Technol 10:392403 Google Scholar
Matlaga, DP, Davis, AS (2013) Minimizing invasive potential of Miscanthus × giganteus grown for bioenergy: identifying demographic thresholds for population growth and spread. J Appl Ecol 50:479487 Google Scholar
Miesel, JR, Renz, MJ, Doll, JE, Jackson, RD (2012) Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin. Biomass Bioenergy 36:121131 Google Scholar
Minelli, M, Rapparini, L, Venturi, G (2004) Weed management in switchgrass crop. Pages 439441 in Proceedings of the 2nd World Conference on Biomass for Energy, Industry and Climate Protection. Florence, Italy ETA Florence Renewable Energies. http://www.cres.gr/bioenergy_chains/files/pdf/Articles/7-Rome%20V1A_111.pdf. Accessed May 9, 2013Google Scholar
Mitchell, RB, Vogel, KP, Berdahl, J, Masters, RA (2010) Herbicides for establishing switchgrass in the Central and Northern Great Plains. Bioenergy Res 3:321327 Google Scholar
Renz, M, Undersander, D, Casler, M (2009) Establishing and Managing Switchgrass. http://www.uwex.edu/ces/forage/pubs/switchgrass.pdf. Accessed April 14, 2014Google Scholar
Sacks, EJ, Jakob, K, Gutterson, NI, inventors. Mendel Biotechnology Inc., assignee (2013) May 2. High biomass miscanthus varieties. C12N 15/8242, U.S. patent US 2013/0111619 A1Google Scholar
Schnepf, R, Yacobucci, BD (2013) Renewable Fuel Standard: Overview and Issues. March 14, 2013: CRS Report for Congress. Washington, DC: Congressional Research Service R40155. 31 pGoogle Scholar
Smith, LL, Barney, JN (2014) The relative risk of invasion: evaluation of Miscanthus × giganteus seed establishment. Invasive Plant Sci Manage 7:93106 Google Scholar
Trower, T, Boerboom, C, Doll, J, Proost, R (2001) Herbicide Rates in Corn: Questions and Answers for Your Farm. Madison, WI: University of Wisconsin Cooperative Extension Publishing A3563. 8 pGoogle Scholar
U.S. Department of Energy (2011) U.S. Billion Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. Perlack, RD, Stokes, BJ, leads. Oak Ridge, TN: Oak Ridge National Laboratory ORNL/TM-2011/224. 227 pGoogle Scholar
Vogel, KP (1987) Seeding rates for establishing big bluestem and switchgrass with preemergence atrazine applications. Agron J 79:509512 Google Scholar
West, NM, Matlaga, DP, Davis, AS (2014) Quantifying targets to manage invasion risk: light gradients dominate the early regeneration niche of naturalized and pre-commercial Miscanthus populations. Biol Invasions 16:19912001 Google Scholar
Wilson, RG (1995) Effect of imazethapyr on perennial grasses. Weed Technol 9:187191 Google Scholar