Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T11:16:58.313Z Has data issue: false hasContentIssue false

Response of Miscanthus × giganteus and Miscanthus sinensis to Postemergence Herbicides

Published online by Cambridge University Press:  20 January 2017

Wesley J. Everman*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
Alexander J. Lindsey
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
Gerald M. Henry
Affiliation:
Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122
Calvin F. Glaspie
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325
Kristin Phillips
Affiliation:
Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122
Cynthia McKenney
Affiliation:
Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409-2122
*
Corresponding author's E-mail: [email protected]

Abstract

Studies were conducted under greenhouse conditions at Michigan State University and Texas Tech University to investigate the tolerance of Miscanthus × giganteus and Miscanthus sinensis to POST herbicides. Miscanthus sinensis and M. × giganteus were treated with 10 and 18 POST herbicide treatments, respectively. Plants were evaluated for injury as well as dry aboveground and belowground biomass production 28 days after treatment. Imazethapyr at 0.069 kg ai ha−1 caused 5% injury to M. sinensis, which was greater than the nontreated check. Imazethapyr, imazamox at 0.044 kg ai ha−1, and rimsulfuron at 0.017 kg ai ha−1 reduced aboveground biomass of M. sinensis compared with the nontreated check. Dicamba at 0.56 kg ai ha−1 and halosulfuron at 0.035 kg ai ha−1 resulted in M. sinensis aboveground biomass similar to the nontreated check. Injury exhibited by M. × giganteus was greater than the nontreated check with glyphosate at 0.84 kg ae ha−1 (54%), foramsulfuron at 0.037 kg ai ha−1 (32%), nicosulfuron at 0.035 kg ai ha−1 (28%), and imazamox at 0.044 kg ai ha−1 (10%). These treatments also yielded the lowest aboveground biomass values. The results of this study demonstrate that M. sinensis is more tolerant of the POST herbicides tested here than M.×x. giganteus. Several herbicide options may be available for weed management in M. sinensis and M. × giganteus stands following additional field trials to validate initial findings.

En la Universidad Estatal de Michigan y la Universidad Tecnológica de Texas se realizaron estudios bajo condiciones de invernadero, para investigar la tolerancia de Miscanthus × giganteus y Miscanthus sinensis a herbicidas post-emergentes (POST), los cuales recibieron 18 y 10 tratamientos POST, respectivamente. Se evaluó el nivel de daño la producción de biomasa seca de las plantas sobre y bajo el suelo, 28 días después del tratamiento (DAT). Imazethapyr a 0.069 kg ia ha−1 causó 5% de daño a M. sinensis, lo cual fue mayor que el testigo no tratado. Los tratamientos con imazethapyr, imazamox a 0.044 kg ia ha−1, y rimsulfuron a 0.017 kg ia ha−1, redujeron la biomasa aérea de M. sinensis, en comparación al testigo no tratado. Tratamientos de dicamba a 0.56 kg ia ha−1 y halosulfuron a 0.035 kg ia ha−1 resultaron en una biomasa aérea de M. sinensis similar a la del testigo no tratado. El daño exhibido por M. × giganteus fue mayor que el testigo no tratado, cuando se utilizó glyphosate a 0.84 kg ea ha−1 (54%), foramsulfuron a 0.037 kg ia ha−1 (32%), nicosulfuron a 0.035 kg ia ha−1 (28%), e imazamox a 0.044 kg ia ha−1 (10%). Estos tratamientos también mostraron los rendimientos más bajos de biomasa aérea. Los resultados de este estudio demuestran que M. sinensis es más tolerante a los herbicidas POST usados aquí que M. × giganteus. Varias opciones de herbicidas podrían estar disponibles para el manejo de malezas en plantaciones de M. sinensis y M. × giganteus después de que se realicen estudios de campo adicionales para validar los resultados iniciales.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2010a. Milestone® product label. Indianapolis, IN Dow AgroSciences LLC. 9 p.Google Scholar
Anonymous. 2010b. Status® product label. Research Triangle Park, NC BASF Corporation. 10 p.Google Scholar
Anonymous. 2010c. Clarity® product label. Research Triangle Park, NC BASF Corporation. 23 p.Google Scholar
Anonymous. 2010d. AAtrex® product label. Greensboro, NC Syngenta Crop Protection. 24 p.Google Scholar
Anonymous. 2010e. Buctril® product label. Research Triangle Park, NC Bayer CropScience, LP. 36 p.Google Scholar
Anonymous. 2010f. Basagran® product label. Cary, NC Arysta LifeScience North America, LLC. 12 p.Google Scholar
Anderson, E. K., Voigt, T. B., Bollero, G. A., and Hager, A. G. 2009. Eradication studies in Miscanthus × giganteus . N. C. Weed Sci. Soc. Proc. 64:103.Google Scholar
Anderson, E. K., Voigt, T. B., Bollero, G. A., and Hager, A. G. 2010. Miscanthus × giganteus response to preemergence and postemergence herbicides. Weed Technol. 24:453460.CrossRefGoogle Scholar
Beale, C. V. and Long, S. P. 1995. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ. 18:641650.CrossRefGoogle Scholar
Beale, C. V. and Long, S. P. 1997. The effects of nitrogen and irrigation on the productivity of C4 grasses Miscanthus × giganteus and Spartina cynosuroides . Aspects Appl. Biol. 49:225230.Google Scholar
Beale, C. V., Morison, J. I. L., and Long, S. P. 1999. Water use efficiency of C4 perennial grasses in a temperate climate. Agric. Forest Meteorol. 96:103115.Google Scholar
Blasi, D. A., Ward, J. K., Klopfestein, T. J., and Britton, R. A. 1991. Escape protein for beef cows: III. Performance of lactation beef cows grazing smooth brome or big bluestem. J. Anim. Sci. 69:22942302.Google Scholar
Clifton-Brown, J. C., Stampfl, P. F., and Jones, M. B. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob. Change Biol. 10:509518.Google Scholar
Coats, G. E. 1985. Weed control in warm-season turfgrasses with imidazolinone herbicides. Proc. South. Weed Sci. Soc. 38:97.Google Scholar
Coats, G. E., Anderson, D. H., and Heering, D. C. 1986. Evaluation of imidazolinone herbicides in warm-season turfgrasses. Proc. South. Weed Sci. Soc. 39:111.Google Scholar
Coffey, K. P., Nagaraja, T. G., Towne, E. G., and Brazle, F. K. 2000. Digestibility of prairie hay diets supplemented with different levels of magnesium-mica by beef heifers. J. Anim. Sci. 78:718725.Google Scholar
Derr, J. F. 2002. Tolerance of ornamental grasses to preemergence herbicides. J. Environ. Hort. 20:161165.Google Scholar
Dickens, R. and Turner, D. L. 1984. Postemergence herbicide tolerance among warm-season turfgrasses. Proc. South. Weed Sci. Soc. 37:20.Google Scholar
Dohleman, F. G., Heaton, E. A., Leakey, A. D. B., and Long, S. P. 2009. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ. 32:15251537.Google Scholar
Dohleman, F. G. and Long, S. P. 2009. More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol. 150:21042115.Google Scholar
Eckert, J. V., Myer, R. O., Warren, L. K., and Brendemuhl, J. H. 2010. Digestibility and nutrient retention of perennial peanut and bermudagrass hays for mature horses. J. Anim. Sci. 88:20252061.Google Scholar
Farage, P. K., Blowers, D., Long, S. P., and Baker, N. R. 2006. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus . Plant Cell Environ. 29:720728.Google Scholar
Farmer, C. G., Cochran, R. C., Simms, D. D., Klevesahl, E. A., Wickersham, T. A., and Johnson, D. E. 2001. The effects of several supplementation frequencies on forage use and the performance of beef cattle consuming dormant tallgrass prairie forage. J. Anim. Sci. 79:22762285.Google Scholar
Farrell, A. D., Clifton-Brown, J. C., Lewandowski, I., and Jones, M. B. 2006. Genotypic variation in cold tolerance influences the yield of Miscanthus . Ann. Appl. Biol. 149:337345.Google Scholar
Gilliam, C. H., Keever, G. J., Eakes, D. J., and Fare, D. C. 1992. Postemergence applied herbicides for use on ornamental grasses. J. Environ. Hort. 10:136139.Google Scholar
Goss, R. M., McCalla, J. H., Gaussoin, R. E., and Richardson, M. D. 2006. Herbicide tolerance of buffalograss. Online. Appl. Turf. Sci. June:10.1094/ATS-2006-0621-01-RS.Google Scholar
Greef, J. M. and Deuter, M. 1993. Syntaxonomy of Miscanthus × giganteus GREEF et DEU. Angew. Bot. 67:8790.Google Scholar
Hafley, J. L., Anderson, B. E., and Klopfenstein, T. J. 1993. Supplementation of growing cattle grazing warm-season grass with proteins of various ruminal degradabilities. J. Anim. Sci. 71:522529.Google Scholar
Hakoyama, S., Tanaka, H., Agata, W., and Takeda, T. 1977. Studies on weed vegetation in noncultivated paddy fields. 1. The vegetation of noncultivated paddy fields in the northwestern parts of Fukuoka Prefecture. Jpn. J. Crop Sci. 46:219227.Google Scholar
Harrell, M. S., Williams, D. W., and Brecke, B. J. 2005. Evaluation of sulfonylurea herbicides on cool- and warm-season turf species. Online. Appl. Turf. Sci. November:10.1094/ATS-2005-1121-01-RS.Google Scholar
Hayashi, I., Hishinuma, Y., and Yamasawa, T. 1981. Structure and functioning of Miscanthus sinensis grassland in Sugadaira, Central Japan. Plant Ecol. 48:1725.CrossRefGoogle Scholar
Heaton, E. A., Dohleman, F. G., and Long, S. P. 2008. Meeting US biofuel goals with less land: the potential of Miscanthus . Glob. Change Biol. 14:20002014.Google Scholar
Hennigh, D. S., Al-Khatib, K., Currie, R. S., Tuinstra, M. R., Geier, P. W., Stahlman, P. W., and Claassen, M. M. 2010. Weed control with selected herbicides in acetolactate synthase-resistant sorghum. Crop Prot. 29:879883.Google Scholar
Hodkinson, T. R., Chase, M. W., and Renvoize, S. A. 2002. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogonae, Poaceae) using AFLP and ISSR PCR. Ann. Bot. 89:627636.Google Scholar
Hubbard, J. and Whitwell, T. 1991. Ornamental grass tolerance to postemergence grass herbicides. Hortscience 26:15071509.Google Scholar
Ito, M., Ueki, K., and Sakamoto, S. 1982. Studies on the total vegetation control in railroad: 1. Major weeds and factors affecting their distribution. Weed Res. Jpn. 27:4148.Google Scholar
Jack, K. D. 1999. Development of buffalograss with improved forage quality and yield. . Lubbock, TX Texas Tech University. 70 p.Google Scholar
Jones, M. B. and Walsh, M., eds. 2001. Miscanthus—For Energy and Fibre. London, UK James and James (Science Publishers). 204 p.Google Scholar
Jorgensen, U. 1997. Genotypic variation in dry matter accumulation and content of N, K, and Cl in Miscanthus in Denmark. Biomass Bioenergy. 12:155169.Google Scholar
Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., and Huisman, W. 2000. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 19:209227.Google Scholar
Lewandowski, I., Scurlock, J. M. O., Lindvall, E., and Christou, M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Boimass Bioenergy. 25:335361.Google Scholar
Linde-Laursen, I. B. 1993. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119:297300.Google Scholar
Majtkowski, M., Majtkowska, G., Piłat, J., and Mikołajczak, J. 2009. Grass species from C-4 carbon fixation group: Polish experiment with a novel energy and forage purposes crop. J. Cent. Eur. Agric. 10:211216.Google Scholar
McCurdy, J. D., McElroy, J. S., Breeden, G. K., and Kopsell, D. A. 2008. Mesotrione plus prodiamine for smooth crabgrass (Digitaria ischaemum) control in established bermudagrass turf. Weed Technol. 22:275279.Google Scholar
Mutoh, N., Kimura, M., Oshima, Y., and Iwaki, H. 1985. Species diversity and primary productivity in Miscanthus sinensis grasslands I. Diversity in relation to stand and dominance. Bot. Mag. Tokyo. 98:159170.Google Scholar
Numata, M. 1974. Grassland vegetation. Pages 125147. In Numata, M., ed. The Flora and Vegetation of Japan. Tokyo Elsevier.Google Scholar
Redfearn, D. D., Moser, L. E., Waller, S. S., and Klopfenstein, T. J. 1995. Ruminal degradation of switchgrass, big bluestem and bromegrass leaf proteins. J. Anim. Sci. 73:598605.Google Scholar
Sugiura, T., Kawana, A., and Matsunaga, S. 1970. Study on chemical control of weeds and trees (XIX) treatment with ammonium sulfamate on koshida (Dicranopteris linearis). J. Agric. Sci. Tokyo Nogyo Daigaku 15:97115.Google Scholar
Wada, K., Kodama, S., and Hara, H. 1971. Control of Eulalia (Miscanthus sinensis) by a kind of herbicide ‘Kayanaito granular 15’. Oji Inst. Forest Tree Improve. 104:8.Google Scholar
Wang, D., Portis, A. R., Moose, S. P., and Long, S. P. 2008. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus . Plant Physiol. 148:557567.Google Scholar
Willis, J. B., Ricker, D. B., and Askew, S. D. 2007. Sulfonylurea herbicides applied during early establishment of seeded bermudagrass. Weed Technol. 21:10351038.Google Scholar
Yamada, T. and Ando, K. 1971. Some herbicidal trials of sodium 2,2,3,3-tetrafluoropropionate [TFP], a perennial grass killer, in Japan and West Malaysia. Proc. 3rd Asian Pacif. Weed Sci. Soc. Conf. 51:9. [Abstract]Google Scholar