Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:48:47.477Z Has data issue: false hasContentIssue false

Response of LibertyLink and WideStrike Cotton to Varying Rates of Glufosinate

Published online by Cambridge University Press:  20 January 2017

Darrin M. Dodds*
Affiliation:
Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762
Christopher L. Main
Affiliation:
Department of Plant Sciences, University of Tennessee, Jackson, TN 38388
L. Thomas Barber
Affiliation:
Department of Crop, Soil, and Environmental Science, University of Arkansas Division of Agriculture, Little Rock, AR 72203
Charles Burmester
Affiliation:
Department of Agronomy and Soils, Auburn University, Belle Mina, AL 35615
Guy D. Collins
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793
Keith Edmisten
Affiliation:
Department of Crop Science, North Carolina State University, Raleigh, NC 27695
Daniel O. Stephenson IV
Affiliation:
Louisiana State University AgCenter, Alexandria, LA 71302
Jared R. Whitaker
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Statesboro, GA 30460
Deborah L. Boykin
Affiliation:
U.S. Department of Agriculture–Agriculture Research Service, 141 Experiment Station Road, Stoneville, MS 38776
*
Corresponding author's E-mail: [email protected].

Abstract

Field studies were conducted in Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, and Tennessee during 2010 and 2011 to determine the effect of glufosinate application rate on LibertyLink and WideStrike cotton. Glufosinate was applied in a single application (three-leaf cotton) or sequential application (three-leaf followed by eight-leaf cotton) at 0.6, 1.2, 1.8, and 2.4 kg ai ha−1. Glufosinate application rate did not affect visual injury or growth parameters measured in LibertyLink cotton. No differences in LibertyLink cotton yield were observed because of glufosinate application rate; however, LibertyLink cotton treated with glufosinate yielded slightly more cotton than the nontreated check. Visual estimates of injury to WideStrike cotton increased with each increase in glufosinate application rate. However, the injury was transient, and by 28 d after the eight-leaf application, no differences in injury were observed. WideStrike cotton growth was adversely affected during the growing season following glufosinate application at rates of 1.2 kg ha−1 and greater; however, cotton height and total nodes were unaffected by glufosinate application rate at the end of the season. WideStrike cotton maturity was delayed, and yields were reduced following glufosinate application at rates of 1.2 kg ha−1 and above. Fiber quality of LibertyLink and WideStrike cotton was unaffected by glufosinate application rate. These data indicate that glufosinate may be applied to WideStrike cotton at rates of 0.6 kg ha−1 without inhibiting cotton growth, development, or yield. Given the lack of injury or yield reduction following glufosinate application to LibertyLink cotton, these cultivars possess robust resistance to glufosinate. Growers are urged to be cautious when increasing glufosinate application rates to increase control of glyphosate-resistant Palmer amaranth in WideStrike cotton. However, glufosinate application rates may be increased to maximum labeled rates when making applications to LibertyLink cotton without fear of reducing cotton growth, development, or yield.

Estudios de campo fueron realizados en Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, y Tennessee durante 2010 y 2011 para determinar el efecto de la dosis de aplicación de glufosinate sobre algodón LibertyLink y WideStrike. Se aplicó glufosinate en una aplicación sencilla (algodón con tres hojas) o en aplicaciones secuenciales (algodón con tres hojas seguido de ocho hojas) a 0.6, 1.2, 1.8, y 2.4 kg ai ha−1. La dosis de aplicación de glufosinate no afectó el daño estimado visualmente o los parámetros de crecimiento medidos en algodón LibertyLink. No se observaron diferencias en el rendimiento del algodón LibertyLink debido a la dosis de glufosinate. Sin embargo, el algodón LibertyLink tratado con glufosinate produjo un rendimiento ligeramente mayor que el testigo sin tratamiento. Estimaciones visuales de daño en el algodón WideStrike aumentaron con el incremento en la dosis de aplicación de glufosinate. Sin embargo, el daño fue transitorio, y a 28 d después de la aplicación a ocho hojas, no se observó ninguna diferencia entre dosis. El crecimiento del algodón WideStrike fue afectado adversamente durante la temporada de crecimiento después de las aplicaciones de glufosinate a dosis de 1.2 kg ha−1 o mayores. Sin embargo, la altura del algodón y el total de nudos no fueron afectados por la dosis de aplicación de glufosinate al final de la temporada. La madurez del algodón WideStrike fue retrasada, y los rendimientos reducidos después de la aplicación de glufosinate a 1.2 kg ha−1 o más. La calidad de la fibra de los algodones LibertyLink y WideStrike no fue afectada por la dosis de aplicación de glufosinate. Estos datos indican que se puede aplicar glufosinate a algodón WideStrike a dosis de 0.6 kg ha−1 sin inhibir el crecimiento, el desarrollo, o el rendimiento del algodón. Debido a la ausencia de daño o reducción en el rendimiento después de la aplicación de glufosinate al algodón LibertyLink, estos cultivares poseen una resistencia robusta a glufosinate. Se urge a los productores a ser precavidos cuando incrementen las dosis de aplicación de glufosinate para aumentar el control de Amaranthus palmeri resistente a glyphosate en algodón WideStrike. Sin embargo, las dosis de aplicación de glufosinate podrían ser aumentadas a la dosis máxima de la etiqueta cuando se hacen aplicaciones a algodón LibertyLink sin tener temor de reducir el crecimiento, el desarrollo, o el rendimiento del algodón.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address of second author: Cotton Development Specialist, Dow AgroSciences LLC, 120 Hidden Creek Cove, Medina, TN 38355.

Associate Editor for this paper: Lawrence E. Steckel, University of Tennessee.

References

Literature Cited

Anonymous (2006a) Roundup Ready Flex Cotton: Technical Bulletin, St. Louis, MO: Monsanto Google Scholar
Anonymous (2006b) Product Safety Assessment WideStrike Insect Protection. http://www.dow.com/productsafety/finder/ws.htm. Accessed August 13, 2013Google Scholar
Anonymous (2015) Liberty Specimen Label. Bayer CropScience Publication No. US80479786C. Research Triangle Park, NC: Bayer CropScience. http://www.cdms.net/ldat/ldUA5004.pdf. Accessed June 3, 2015Google Scholar
Barnett, KA, Culpepper, AS, York, AC, Steckel, LE (2013) Palmer amaranth (Amaranthus palmeri) control by glufosinate plus fluometuron applied postemergence to WideStrike cotton. Weed Technol 27:291297 Google Scholar
Blair-Kerth, LK, Dotray, PA, Keeling, JW, Gannaway, JR, Oliver, MJ, Quisenberry, JE (2001) Tolerance of transformed cotton to glufosinate. Weed Sci 49:375380 Google Scholar
Bond, JA, Walker, TW, Bollich, PK, Koger, CH, Gerard, PD (2005) Seeding rates for stale seedbed rice production in the midsouthern United States. Agron J 97:15601563 Google Scholar
Bond, JA, Walker, TW, Ottis, BV, Harrell, DL (2008) Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars. Agron J 100:393397 Google Scholar
Carmer, SG., Nyquist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two- or three-factor designs. Agron J 81:665672 Google Scholar
[CERA] Center for Environmental Risk Assessment (2013a) ACS-GH001-3 (LLCotton25) database. http://cera-gmc.org/index.php?evidcode%5B%5D=LLCotton25&hstIDXCode%5B%5D=7&auDate1=&auDate2=&action=gm_crop_database&mode=Submit. Accessed August 13, 2013Google Scholar
[CERA] Center for Environmental Risk Assessment (2013b) DAS-20123-5 x DAS-24236-5. http://cera-gmc.org/index.php?evidcode%5B%5D=DAS-21%D823-5+x+DAS-24236-5&hstIDXCode%5B%5D=7&auDate1=&auDate2=&action=gm_crop_database&mode=Submit. Accessed August 13, 2013Google Scholar
Castle, LA, Wu, G, McElroy, D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17:105112 Google Scholar
Coetzer, E, Al-Khatib, K (2001) Photosynthetic inhibition and ammonium accumulation in Palmer amaranth after glufosinate application. Weed Sci 49:454459 Google Scholar
Culpepper, AS, Eure, PM, Grey, T, Fowler, T (2014) Time of day influence on control of palmer amaranth by dicamba tank mixes. Page 44 In Proceedings of the Beltwide Cotton Conferences. New Orleans, LA National Cotton Council of America Google Scholar
Culpepper, AS, York, AC, Roberts, P, Whitaker, JR (2009) Weed control and crop response to glufosinate applied to ‘PHY 485 WRF' cotton. Weed Technol 23:356362 Google Scholar
Everman, WJ, Burke, IC, Allen, JR, Collins, J, Wilcut, JW (2007) Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol 21:695701 Google Scholar
Frans, R, Talbert, R, Marx, D, Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, ND, ed. Research Methods in Weed Science. 3rd edn. Champaign, IL: South Weed Sci Soc Google Scholar
Gardner, AP, York, AC, Jordan, DL, Monks, DW (2006) Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J Cotton Sci 10:328338 Google Scholar
Golden, BR, Clark, WE, Dodds, DM, Buehring, NW, Martin, SW, Shankle, MW, Wallace, TP (2013) Mississippi Cotton Variety Trials 2012. MAFES Information Bulletin 477 of the Mississippi Agricultural and Forestry Experiment Station http://msucares.com/pubs/infobulletins/ib0477.pdf. Accessed August 13, 2013Google Scholar
Green, JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci 57:108117 Google Scholar
Hager, AG, Wax, LM, Bollero, GA, Stoller, EW (2003) Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420 Google Scholar
Herouet, C, Esdaile, DJ, Mallyon, BA, Debuyne, E, Schulz, A, Currier, T, Hendricks, K, van der Klis, RJ, Rouan, D (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul Toxicol Pharmacol 41:134139 Google Scholar
Jenkins, JN, McCarty, JC, Parrot, WL (1990) Effectiveness of fruiting sites in cotton yield. Crop Sci 30:365369 Google Scholar
Koger, CH, Price, AJ, Faircloth, JC, Wilcut, JW, Nichols, SP (2007) Effect of residual herbicides used in the last POST-directed application on weed control and cotton yield in glyphosate- and glufosinate-resistant cotton. Weed Technol 21:378383 Google Scholar
MacRae, AW, Culpepper, AS, Kichler, JM (2007) Managing glyphosate-resistant Palmer amaranth in LibertyLink cotton. Pages 12321233 in Proceedings of the Beltwide Cotton Conference. New Orleans, LA National Cotton Council of America Google Scholar
Norsworthy, JK, Griffith, GM, Scott, RC, Smith, KL, Oliver, LR (2008) Confirmation and control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technol 22:108113 Google Scholar
[OECD] Organization for Economic Co-operation and Development (2002) Module II: Herbicide Biochemistry, Herbicide Metabolism and the Residues in Glufosinate-Ammonium (Phosphinothricin)-Tolerant Transgenic Plants. http://www.oecd.org/science/biotrack/46815748.pdf. Accessed: August 13, 2013Google Scholar
Ottis, BV, O'Barr, JH, McCauley, GN, Chandler, JM (2004) Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on course-textured soils. Weed Technol 18:10961100 Google Scholar
Sasser, PE (1981) The basics of high volume instruments for fiber testing. Pages 191193 in Proceedings of the Beltwide Cotton Conference. New Orleans, LA National Cotton Council of America Google Scholar
Steckel, LE, Stephenson, DO, Bond, JA, Stewart, SD, Barnett, KA (2012) Evaluation of WideStrike Flex cotton response to over-the-top glufosinate tank-mixtures. J Cotton Sci 16:8895 Google Scholar
Tan, S, Evans, R, Singh, B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195204 Google Scholar
Thomas, WE, Pline, WA, Wilcut, JW, Edmisten, KL, Wells, R, Viator, RP, Paulsgrove, MD (2004) Glufosinate does not affect floral morphology and pollen viability in glufosinate-resistant cotton. Weed Technol 18:258262 Google Scholar
[USDA-AMS] U.S. Department of Agriculture–Agriculture Marketing Service (2005) Cotton Varieties Planted—2005 Crop. Washington, DC: USDA-AMS Publication mp_cn833Google Scholar
[USDA-AMS] U.S. Department of Agriculture–Agriculture Marketing Service (2012) Cotton Varieties Planted–2012 Crop. Washington, DC: USDA-AMS Publication mp_cn833Google Scholar
[USDA-NASS] U.S. Department of Agriculture–National Agricultural Statistics Service (2013). Quick Stats. http://quickstats.nass.usda.gov/results/D63F717A-7BCF-3005-9361-EFFF64754DC1. Accessed August 13, 2013Google Scholar
Walker, TW, Bond, JA, Ottis, BV, Gerard, PD, Harrell, DL (2008) Hybrid rice response to nitrogen fertilization for midsouthern United States rice production. Agron J 100:381386 Google Scholar
Wendler, C, Barnisk, M, Wild, A (1990) Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynth Res 24:5561 Google Scholar
Whitaker, JR, York, AC, Jordan, DL, Culpepper, AS (2011) Weed management with glyphosate- and glufosinate-based systems in PHY 485 WRF cotton. Weed Technol 25:183191 Google Scholar
Vencill, WK, ed. (2002) Herbicide Handbook. 8th edn. Lawrence, KS: Weed Science Society of America. Pp 229230 Google Scholar