Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T12:20:13.315Z Has data issue: false hasContentIssue false

Relationship between Visual Injury from Synthetic Auxin and Glyphosate Herbicides and Snap Bean and Potato Yield

Published online by Cambridge University Press:  20 January 2017

Jed B. Colquhoun*
Affiliation:
Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706
Daniel J. Heider
Affiliation:
Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706
Richard A. Rittmeyer
Affiliation:
Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706
*
Corresponding author's E-mail: [email protected].

Abstract

Agronomic crops with resistance to the herbicides dicamba and 2,4-D are currently in the regulatory approval process. The potential increased use of these herbicides has raised concern among vegetable producers about potential off-target movement and implications to crop yield. The overall goal of this research was to describe the relationship between visually estimated crop injury and snap bean and potato yield and quality. In snap bean in 2011, injury from dicamba 7 d after treatment (DAT) ranged from 19% at the 1.2 g ae ha−1 application rate to 45% at the 7.0 g ae ha−1 application rate. By 28 DAT in 2011, injury from 2,4-D was similar to the nontreated control. However, early-season injury in 2011 delayed snap bean flowering and reduced crop yield compared to the nontreated control for all treatments except where the 1.4 g ae ha−1 rate of 2,4-D and glyphosate at 7.0 g ae ha−1 were applied. Snap bean injury from dicamba was greater than that from 2,4-D at all rating timings in 2011 and two of three rating timings in 2012, and crop yield was reduced compared to where 2,4-D was applied and the nontreated control in both years. Potato tuber size distribution was variable and total yield did not differ among treatments and the nontreated control in 2011. In 2012, tuber size distribution was again variable, but more nonmarketable cull potatoes were harvested when dicamba was applied to 25-cm potato plants at the 7.0 g ae ha−1 rate compared to any other treatment. Snap bean injury observations about 3 wk prior to harvest were strongly correlated with crop yield (r = −0.84 and −0.88 in 2011 and 2012, respectively), allowing time to make informed harvest decisions relative to crop quality. In contrast, the relationship between potato injury and tuber yield was poor and highly variable in both years.

Cultivos agronómicos con resistencia a los herbicidas dicamba y 2,4-D están actualmente en proceso de aprobación regulatoria. El potencial incremento en el uso de estos herbicidas ha generado preocupación entre los productores de vegetales por el riesgo potencial de deriva y las implicaciones de esta en el rendimiento de sus cultivos. El objetivo general de esta investigación fue el describir la relación entre el daño del cultivo estimado visualmente y el rendimiento y la calidad del frijol y de la papa. En frijol en 2011, el daño producido por dicamba a 7 días después del tratamiento (DAT) varió de 19% con la dosis de aplicación de 1.2 g ae ha−1 a 45% con la dosis de aplicación de 7.0 g ae ha−1. A 28 DAT en 2011, el daño causado por 2,4-D fue similar el testigo no-tratado. Sin embargo, el daño, temprano en la temporada en 2011, retrasó la floración del frijol y redujo el rendimiento del cultivo en comparación con el testigo no-tratado para todos los tratamientos, excepto donde se aplicó una dosis de 1.4 g ae ha−1 de 2,4-D y glyphosate a 7.0 g ae ha−1. El daño de dicamba en el frijol fue mayor que el producido por 2,4-D en todos los momentos de evaluación en 2011 y en dos de los tres momentos de evaluación en 2012, y el rendimiento del cultivo se redujo en comparación con el testigo no-tratado y parcelas tratadas con 2,4-D, en ambos años. La distribución de tamaños de tubérculo de papa fue variable y el rendimiento total no difirió entre tratamientos y el testigo no-tratado, en 2011. En 2012, la distribución de tamaños de tubérculos fue nuevamente variable, pero se cosecharon más papas no comercializables cuando se aplicó a plantas de papa de 25 cm una dosis de dicamba de 7.0 g ae ha−1, en comparación con cualquier otro tratamiento. Las observaciones de daño del frijol cerca de 3 semanas antes de la cosecha estuvieron fuertemente correlacionadas con el rendimiento del cultivo (r = −0.84 y −0.88 en 2011 y 2012, respectivamente), lo que dio tiempo para la toma informada decisiones acerca de la cosecha en relación a la calidad del cultivo. En contraste, la relación entre el daño de la papa y el rendimiento de tubérculo fue pobre y altamente variable en ambos años.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Arledge-Keene, A, Mitchell, P (2010) Economic Impact of Specialty Crop Production and Processing in Wisconsin. UW-Madison Agricultural and Applied Economics Working Paper. http://www.aae.wisc.edu/pdmitchell/Crop_impacts.pdf. Accessed September 30, 2013Google Scholar
Banks, P, Schroeder, J (2002) Carrier volume affects herbicide activity in simulated spray drift studies. Weed Technol 16:833837 Google Scholar
Bussan, A, Colquhoun, J, Cullen, E, Davis, V, Gevens, A, Groves, R, Heider, D, Nice, G, Ruark, M (2014) Commercial Vegetable Production in Wisconsin. UW-Extension Bulletin A3422. http://learningstore.uwex.edu/assets/pdfs/A3422.PDF. Accessed June 30, 2014Google Scholar
Dean, B, Thornton, R (1992) The Specific Gravity of Potatoes. Pullman, WA: Washington State University, Cooperative Extension Bulletin 1541. Pages 20 p.Google Scholar
Everitt, J, Keeling, J (2009) Cotton growth and yield response to simulated 2,4-D and dicamba drift. Weed Technol 23:503506 CrossRefGoogle Scholar
Heap, I (2013) International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed September 20, 2013.Google Scholar
Johnson, V, Fisher, L, Jordan, D, Edmisten, E, Stewart, A, York, A (2012) Cotton, peanut, and soybean response to sublethal rates of dicamba, glufosinate, and 2,4-D. Weed Technol 26:195206 Google Scholar
Jordan, T, Romanowski, R (1974) Comparison of dicamba and 2,4-D injury to field-grown tomatoes. HortScience 9:7475 Google Scholar
Kruger, G, Johnson, W, Doohan, D, Weller, S (2012) Dose response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol 26:256260 CrossRefGoogle Scholar
Marple, M, Al-Khatib, K, Peterson, D (2008) Cotton injury and yield as affected by simulated drift of 2,4-D and dicamba. Weed Technol 22:609614 Google Scholar
Marple, M, Al-Khatib, K, Shoup, D, Peterson, D, Claassen, M (2007) Cotton response to simulated drift of seven hormonal-type herbicides. Weed Technol 21:987992 CrossRefGoogle Scholar
[USDA-AMS] U.S. Department of Agriculture Agricultural Marketing Service (2013a) United States Standards for Grades of Snap Beans for Processing. http://www.ams.usda.gov. Accessed October 15, 2013Google Scholar
[USDA-AMS] U.S. Department of Agriculture Agricultural Marketing Service (2013b) United States Standards for Grades of Potatoes for Processing. http://www.ams.usda.gov. Accessed October 15, 2013Google Scholar
Wall, D (1994) Potato (Solanum tuberosum) response to simulated drift of dicamba, clopyralid, and tribenuron. Weed Sci 42:110114 CrossRefGoogle Scholar