Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-02T19:25:49.412Z Has data issue: false hasContentIssue false

A Reflection on My Research in Weed Biological Control: Using What We Have Learned for Future Applications

Published online by Cambridge University Press:  20 January 2017

Raghavan Charudattan*
Affiliation:
Plant Pathology Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32611
*
Corresponding author's E-mail: [email protected].

Abstract

When I began my foray into the field of biological control of weeds in 1971, the concept of deliberately using pathogens to control weeds was novel and untested and met with skepticism and resistance. Soon, a worldwide network of plant pathologists, weed scientists, microbial technologists, formulation specialists, and regulatory personnel came together to study, develop, and apply pathogens in safe and effective ways of control of a variety of weeds in crops and natural areas. Several new weed–pathogen systems were studied; a few dozen products and pathogens were brought to use, albeit on a very small scale compared to conventional weed-control products; and along the way, some valuable lessons were learned in phytopathology and weed ecology. A seminal body of information was published on the etiology and epidemiology of several diseases of weeds, many new pathogens were discovered and described, and methods were developed for mass production, formulation, and storage of pathogens. Numerous pathogen-produced herbicidal metabolites were discovered and characterized. Protocols were developed, tested, and applied for safe importation and release of exotic pathogens and for registration of microbial herbicides. Spectacular success was achieved with some pathogens used as classical biocontrol agents, and a new class of herbicide, the bioherbicides, came on the scene. Yet some key opportunities were missed. Notably, weed biocontrol research remained largely preoccupied with agent or product development and deployment while great strides were made during this period in phytopathology to understand the genetic–molecular basis of virulence, host range, host specificity, host response to infection, cell death, and pathogen population structure. Nevertheless, the accomplishments in the field of weed biocontrol by pathogens are truly significant. Certainly, we are poised to apply the knowledge gained toward discovery and development of additional weed-control pathogens, but increased effort should be directed also at using pathogen genes, gene products, and genetic mechanisms for weed control. An investment in the latter could help us gain insights into genetically programmed host–pathogen interactions that may be exploited to kill weeds, restrain weed growth, or knock out traits for invasiveness. In our continuing struggle to manage weeds, biocontrol with pathogens should remain a major thrust. Here I present perceptions I have gained from the work that my students, postdoctoral and technical associates, colleagues, and I have done with several weed–pathogen systems.

Cuando empecé mi andar en el campo del control biológico de malezas en 1971, el concepto de uso deliberado de patógenos para controlar malezas era una novedad no probada y me topé con escepticismo y resistencia. Pronto, una red mundial de especialistas patólogos vegetales, científicos de malezas, tecnólogos especialistas en microbiología, especialistas en formulaciones y demás personal regulador se unieron para estudiar, desarrollar y aplicar los patógenos de una manera más segura y efectiva para controlar una variedad de malezas en cultivos y áreas naturales. Muchos de los nuevos sistemas de control de malezas con patógenos fueron estudiados. Algunas docenas de productos patógenos fueron traídos para su uso, aunque en una escala muy pequeña comparada a los productos convencionales en este campo. A lo largo del camino, aprendí algunas lecciones valiosas sobre fitopatología y ecología de malezas. Un creativo cuerpo de información fue publicado sobre etiología y epidemiología de varias enfermedades que atacan a las malezas. Muchos nuevos patógenos fueron descubiertos y clasificados y los métodos se fueron desarrollando para la producción masiva, la formulación y el almacenamiento de patógenos. Numerosos herbicidas metabólicos basados en patógenos fueron descubiertos y clasificados. Los protocolos fueron desarrollados, evaluados y autorizados para la importación y liberación segura de patógenos exóticos y también para su registro como herbicidas microbiales. Se alcanzó un éxito espectacular con algunos patógenos utilizados como agentes clásicos de bio-control, y un nuevo tipo de herbicidas, los bio-herbicidas, salieron al mercado, Aún así, algunas oportunidades claves hacían falta. Notablemente, la investigación sobre el control biológico de malezas permaneció mayormente concentrada en el desarrollo de agentes o productos y con su comercialización, mientras grandes avances se hacían durante este período en fitopatología para entender la base genética molecular de la virulencia, el rango y especificidad de las hospederas, la respuesta de las hospederas a la infección, la muerte celular y la estructura de la población de patógenos. Sin embargo, los logros en el campo del control biológico de malezas utilizando patógenos son verdaderamente significativos. Ciertamente, estamos en el momento oportuno de aplicar los conocimientos obtenidos hacia el descubrimiento y desarrollo de patógenos adicionales. Sin embargo, los esfuerzos también deben ser enfocados al uso de genes de los patógenos, el desarrollo de productos derivados de estos genes y los mecanismos genéticos para el control de malezas. Una inversión en el último concepto podría ayudarnos a ganar terreno en el campo de las investigaciones genéticamente programadas de interacciones de patógenos hospederos que pueden ser explotados para matar malezas, restringir su crecimiento o aniquilar las amenazas de invasión en los cultivos. En nuestra continua lucha para un mejor manejo de malezas, el control biológico con patógenos debe permanecer seguro. En este documento, presento especificaciones que he adquirido del trabajo que mis estudiantes, asociados post-doctorales y técnicos, colegas y yo hemos hecho con varios sistemas de patógenos para el control de las malezas.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, J. L. 2006. Notices. Approved applications. Federal Register 71 (No. 72), Friday, April 14, 2006. 19507. http://ftp.resource.org/gpo.gov/register/2006/2006_19507.pdf. Accessed: March 6, 2010.Google Scholar
Chandramohan, S. and Charudattan, R. 1998. A technique for mass production and multiple-harvesting of two bioherbicide fungi by solid-substrate culturing. Weed Sci. Soc. Am. Abstr 38:81.Google Scholar
Chandramohan, S. and Charudattan, R. 2001. Control of seven grasses with a mixture of three fungal pathogens with restricted host ranges. Biol. Control 22:246255.Google Scholar
Chandramohan, S. and Charudattan, R. 2003. A multiple-pathogen strategy for bioherbicidal control of several weeds. Biocontrol Sci. Technol 13:199205.Google Scholar
Chandramohan, S., Charudattan, R., Sonoda, R. M., and Singh, Megh. 2002. Field evaluation of a fungal pathogen mixture for the control of seven weedy grasses. Weed Sci 50:204213.Google Scholar
Charudattan, R. 1975. Weed control with plant pathogens. Agrichem. Age 1975 (Jan.–Feb):912.Google Scholar
Charudattan, R. 1990. Assessment of efficacy of mycoherbicide candidates. Pages 455464. In Delfosse, E. S. Proceedings of the VII International Symposium on Biological Control of Weeds. Rome: Instituto Sperimentale per la Patologia Vegetale, Ministero dell' Agricultura e della Foreste.Google Scholar
Charudattan, R. 2005a. Fungal pathogens: their role in the ecology of floating and submerged freshwater plants. Phytopathology 95 (Suppl):S120.Google Scholar
Charudattan, R. 2005b. Ecological, practical, and political inputs into selection of weed targets: what makes a good biological control target? Biol. Control 35:183196.Google Scholar
Charudattan, R. and Conway, K. E. 1975. Comparison of Uredo eichhorniae, the waterhyacinth rust with Uromyces pontederiae . Mycologia 67:653657.Google Scholar
Charudattan, R., Freeman, T. E., Cullen, R., and Hofmeister, F. M. 1980a. Evaluation of Fusarium roseum ‘Culmorum’ as a biological control for Hydrilla verticillata: safety. Pages 307323. In Del Fosse, E. S. Proceedings of the V International Symposium on Biological Control of Weeds. Canberra, Australia: Commonwealth Scientific and Industrial Research Organisation.Google Scholar
Charudattan, R. and Hiebert, E. 2007. A plant virus as a bioherbicide for tropical soda apple, Solanum viarum . Outlooks Pest Manag 18:167171.Google Scholar
Charudattan, R., Linda, S. B., Kluepfel, M., and Osman, Y. A. 1985. Biocontrol efficacy of Cercospora rodmanii on waterhyacinth. Phytopathology 75:12631269.Google Scholar
Charudattan, R. and McKinney, D. E. 1978. A Dutch isolate of Fusarium roseum ‘Culmorum’ may control Hydrilla verticillata in Florida. Pages 219224. in. Proceedings of the European Weed Research Society 5th Symposium on Aquatic Weeds. Wageningen, The Netherlands: European Weed Research Society.Google Scholar
Charudattan, R., McKinney, D. E., Cordo, H. A., and Silveira-Guido, A. 1976. Uredo eichhorniae, a potential biocontrol for waterhyacinth. Pages 210213. In Freeman, T. E. Proceedings of the IV International Symposium on Biological Control of Weeds. Gainesville, FL: Institute of Food and Agricultural Sciences, University of Florida.Google Scholar
Charudattan, R., McKinney, D. E., and Hepting, K. T. 1981. Production, storage, germination, and infectivity of uredospores of Uredo eichhorniae and Uromyces pontederiae . Phytopathology 71:12031207.Google Scholar
Charudattan, R., Pettersen, M. S., and Hiebert, E., inventors; University of Florida Research Foundation, Inc., assignee. 2004 Feb 10. Use of tobacco mild green mosaic virus (TMGMV)-mediated lethal hypersensitive response (HR) as a novel method of weed control. U.S. patent No. 6,689,718 B2.Google Scholar
Charudattan, R., Verma, U., DeValerio, J. T., and Tomley, A. 1995. Pathogens attacking groundsel bush, Baccharis halimifolia L., in Florida. Pages 437444. In Delfosse, E. S. and Scott, R. R. Proceedings of the VIII International Symposium on Biological Control of Weeds. Melbourne, Australia: Department of Scientific and Industrial Research/Commonwealth Scientific and Industrial Research Organisation.Google Scholar
Charudattan, R., Walker, H. L., Boyette, C. D., Ridings, W. H., TeBeest, D. O., VanDyke, C. G., and Worsham, A. D. 1986. Evaluation of Alternaria cassiae as a mycoherbicide for sicklepod (Cassia obtusifolia) in regional field tests. Auburn, AL: Alabama Agricultural Experiment Station, Auburn University, Southern Cooperative Series Bulletin 317. 19.Google Scholar
Charudattan, R., Zettler, F. W., Cordo, H. A., and Christie, R. G. 1980b. Partial characterization of a potyvirus infecting the milkweed vine, Morrenia odorata . Phytopathology 70:909913.Google Scholar
Ciferri, R. and Fragoso, R. G. 1927. Hongos parasitos y saprofitos de la Republica Dominicana. Bol. Soc. Esp. Hist. Nat 27:6881.Google Scholar
Coile, N. 1993. The plant from hell. The Palmetto, Quarterly Magazine of the Florida Native Plant Society 13 (3):7.Google Scholar
Conway, K. E. 1976a. Cercospora rodmanii, a new pathogen of water hyacinth with biological control potential. Can. J. Bot 54:10791083.Google Scholar
Cook, J. C., Charudattan, R., Zimmerman, T. W., Rosskopf, E. N., Stall, W. M., and MacDonald, G. E. 2009. Effects of Alternaria destruens, glyphosate, and ammonium sulfate individually and integrated for control of dodder (Cuscuta pentagona). Weed Technol 23:550555.Google Scholar
Den Breeyen, A. 2007. Biological control of Imperata cylindrica in West Africa using fungal pathogens. Ph.D Dissertation. Gainesville, FL: University of Florida. 134.Google Scholar
De Simoni, F., Pitelli, R. L. C. M., and Pitelli, R. A. 2006. Efeito da incorporação no solo de sementes de fedegoso (Senna obtusifolia) colonizadas por Alternaria cassiae no controle desta planta infestante. Summa Phytopathol 32:367372.Google Scholar
DeValerio, J. T. and Charudattan, R. 1999. Field testing of Ralstonia solanacearum [Smith] Yabuuchi et al. as a biocontrol agent for tropical soda apple (Solanum viarum Dunal). Weed Sci. Soc. Am. Abstr 39:70.Google Scholar
Elliott, M. S., Massey, B., Cui, X., Hiebert, E., Charudattan, R., Waipara, N., and Hayes, L. 2009. Supplemental host range of Araujia mosaic virus, a potential biological control agent of moth plant in New Zealand. Australasian J. Plant Pathol 38:603607.Google Scholar
Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., and Charudattan, R. 2006a. Herbicidal potential of ophiobolins produced by Drechslera gigantea . J. Agric. Food Chem 54:17791783.Google Scholar
Evidente, A., Andolfi, A., Cimmino, A., Vurro, M., Fracchiolla, M., Charudattan, R., and Motta, A. 2006b. Ophiobolin E and 8-epi-ophiobolin J, phytotoxins produced by Drechslera gigantean, a potential mycoherbicides of weedy grasses. Phytochemistry 67:22812287.Google Scholar
Freeman, T. E. and Charudattan, R. 1984. Cercospora rodmanii Conway, a potential biocontrol agent. Gainesville, FL: Florida Agricultural Experiment Station Tech. Bull. 842. 18.Google Scholar
Freeman, T. E. and Charudattan, R. 1985. Conflicts in the use of plant pathogens as biocontrol agents for weeds. Pages 351–257. In Delfosse, E. S. Proceedings of the VI International Symposium on Biological Control of Weeds. Ottawa, Canada: Agriculture Canada.Google Scholar
Hiebert, E. and Charudattan, R. 1984. Characterization of Araujia mosaic virus by in vitro translation analyses. Phytopathology 74:642646.Google Scholar
Horrell, J. R. 2007. Characterization of the lethal host-pathogen interaction between tobacco mild green mosaic virus and tropical soda apple. . Gainesville, FL: University of Florida. 213.Google Scholar
Kadir, J. B., Charudattan, R., Stall, W. M., and Brecke, B. J. 2000. Field efficacy of Dactylaria higginsii as a bioherbicide for the control of purple nutsedge (Cyperus rotundus). Weed Technol 14:16.Google Scholar
Klingman, D. L. and Coulson, J. R. 1982. Guidelines for introducing foreign organisms into the United States for the biological control of weeds. Weed Sci 20:661667.Google Scholar
Lindquist, C. J. 1982. Royas de la Republica Argentina y Zonas Limitrofes. Buenos Aires, Argentina: Instituto Nacional de Tecnologíca Agropecuaria. 574.Google Scholar
Massey, B., Cui, X., Hiebert, E., Elliott, M. S., Waipara, N., Hayes, L., and Charudattan, R. 2007. Partial sequencing of the genomic RNA of Araujia mosaic virus and comparison of the coat protein sequence with those of other potyviruses. Arch. Virol 152:21252129.Google Scholar
Miller, M. C. and Aplet, G. H. 2005. Applying legal sunshine to the hidden regulation of biological control. Biol. Control 35:358365.Google Scholar
Morales-Payan, J. P., Charudattan, R., DeValerio, J. T., and Stall, W. M. 2003. Control of purple nutsedge (Cyperus rotundus) in bell pepper using the potential bioherbicide Dactylaria higginsii . Weed Sci. Soc. Am. Abstr 43:87.Google Scholar
Pettersen, M. S., Charudattan, R., Hiebert, E., Zettler, F. W., and Elliott, M. S. 2000. Tobacco mild green mosaic tobamovirus strain U2 causes a lethal hypersensitive response in Solanum viarum Dunal (tropical soda apple). Weed Sci. Soc. Am. Abstr 40:84.Google Scholar
Pitelli, R. A., Charudattan, R., and DeValerio, J. T. 1998. Effect of Alternaria cassiae, Pseudocercospora nigricans, and soybean (Glycine max) planting density on the biological control of sicklepod (Senna obtusifolia). Weed Technol 12:3740.Google Scholar
Pitelli, R. L. C. M. and Amorim, L. 2003. Effects of different dew periods and temperatures on infection of Senna obtusifolia by a Brazilian isolate of Alternaria cassiae . Biol. Control 28:237242.Google Scholar
Pomella, A. W. V., Barretto, R. W., and Charudattan, R. 2007. Nimbya alternantherae, a potential biocontrol agent for alligatorweed, Alternanthera philoxeroides . BioControl 52:271288.Google Scholar
Rosskopf, E. N., Charudattan, R., DeValerio, J. T., and Stall, W. M. 2000a. Field evaluation of Phomopsis amaranthicola, as a biological control agent of Amaranthus spp. Plant Dis 84:12251230.Google Scholar
Rosskopf, E. N., Charudattan, R., Shabana, Y. M., and Benny, G. L. 2000b. Phomopsis amaranthicola, a new species from Amaranthus sp. Mycologia 92:114122.Google Scholar
Rosskopf, E. N., Yandoc, C. B., and Charudattan, R. 2005a. Genus-specific host range of Phomopsis amaranthicola (Sphaeropsidales), a bioherbicide agent for Amaranthus spp. Biocontrol Sci. Technol 16:2735.Google Scholar
Rosskopf, E. N., Yandoc, C. B., Charudattan, R., and DeValerio, J. T. 2005b. Influence of epidemiological factors on the bioherbicidal efficacy of Phomopsis amaranthicola on Amaranthus spp. Plant Dis 89:12951300.Google Scholar
Shabana, Y. M., Charudattan, R., DeValerio, J. T., and ElWakil, M. A. 1997. An evaluation of hydrophilic polymers for formulating the bioherbicide agents Alternaria cassiae and A. eichhorniae . Weed Technol 11:212220.Google Scholar
Shabana, Y. M., Charudattan, R., and ElWakil, M. A. 1995. Identification, pathogenicity, and safety of Alternaria eichhorniae from Egypt as a bioherbicide agent for waterhyacinth. Biol. Control 5:123135.Google Scholar
Shabana, Y., Charudattan, R., Klassen, W., Rosskopf, E., and Morales-Payan, J. P. 2007. Use of plant hay for solid substrate production and application of Dactylaria higginsii, a mycoherbicide for the control of purple and yellow nutsedges. Pages 1415. in. International Bioherbicide Group Workshop. La Grande Motte, France: International Bioherbicide Group. http://ibg.ba.cnr.it/VIII-IBG-Workshop-2007.pdf. Accessed: March 6, 2010.Google Scholar
Shearer, J. F. 2010. A Historical Perspective of Pathogen Biological Control of Aquatic Plants. Weed Technol 24:202207.Google Scholar
Sims-Chilton, N. M., Zalucki, M. P., and Buckley, Y. M. 2009. Patchy herbivore and pathogen damage throughout the introduced Australian range of groundsel bush, Baccharis halimifolia, is influenced by rainfall, elevation, temperature, plant density, and size. Biol. Control 50:1320.Google Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1998. Dispersal of spores of Fusarium culmorum in aquatic systems. Phytopathology 88:382388.Google Scholar
Smither-Kopperl, M. L., Charudattan, R., and Berger, R. D. 1999. Deposition and adhesion of spores of Fusarium culmorum on hydrilla. Can J. Plant Pathol 21:291297.Google Scholar
Tharp, B. C. 1917. Texas parasitic fungi. Mycologia 9:105124.Google Scholar
Tessmann, D. J., Charudattan, R., Kistler, H. C., and Rosskopf, E. N. 2001. A molecular characterization of Cercospora species pathogenic to water hyacinth and emendation of C. piaropi . Mycologia 93:323334.Google Scholar
Tessmann, D. J., Charudattan, R., and Preston, J. F. 2008. Variability in aggressiveness, cultural characteristics, cercosporin production and fatty acid profile of Cercospora piaropi, a biocontrol agent of waterhyacinth. Plant Pathol 57:957966.Google Scholar
Verma, U. and Charudattan, R. 1993. Host range of Mycoleptodiscus terrestris, a microbial herbicide candidate for Eurasian watermilfoil, Myriophyllum spicatum . Biol. Control 3:271280.Google Scholar
Verma, U., Charudattan, R., DeValerio, J. T., and Tomley, A. J. 1996. Puccinia evadens, a biological control agent for Baccharis halimifolia . Pages 234. In Moran, V. C. and Hoffmann, J. H. Proceedings of the IX International Symposium on Biological Control of Weeds. Cape Town, South Africa: University of Cape Town.Google Scholar
Viégas, A. P. 1961. Índice de Fungos da América do Sul. Campinas, Brasil: Seção de Fitopatologia, Instituto Agronômico. 921.Google Scholar
Vincent, A. C. and Charudattan, R. 1999. Effects of formulations of Myrothecium roridum Tode ex. Fr. and Cercospora rodmanii Conway on waterhyacinth (Eichhornia crassipes [Mart.] Solms-Laub.) under greenhouse and field conditions. Weed Sci. Soc. Am. Abstr 39:7172.Google Scholar
Vincent, A. C. and Charudattan, R. 2000. Evaluation of a combination of two pathogens as a potential bioherbicide for Eichhornia crassipes [Mart.] Solms-Laub. under field conditions. Abstract No. 453. Pages 217. in. Abstracts of the Third International Weed Science Congress. Foz do Iguassu, Brazil: International Weed Science Congress.Google Scholar
Walker, H. L. 1980. Alternaria macrospora as a Potential Biocontrol Agent for Spurred Anoda. Production of Spores for Field Studies. U.S. Department of Agriculture, Science and Education Administration. Advances in Agricultural Technology AAT-S-12/April 1980. Stoneville, MS: USDA-ARS-Southern Weed Science Laboratory. 5.Google Scholar
Walker, H. L. and Boyette, C. D. 1985. Biocontrol of sicklepod (Cassia obtusifolia) in soybeans (Glycine max) with Alternaria cassiae . Weed Sci 33:212215.Google Scholar
Wyss, G. S., Charudattan, R., and DeValerio, J. T. 2001. Evaluation of agar and grain media for mass production of conidia of Dactylaria higginsii . Plant Dis 85:11651170.Google Scholar
Wyss, G. S., Charudattan, R., Rosskopf, E. N., and Littell, R. C. 2004. Effects of selected pesticides and adjuvants on germination and vegetative growth of Phomopsis amaranthicola, a biocontrol agent for Amaranthus spp. Weed Res 44:114.Google Scholar
Yandoc, C. B., Charudattan, R., and Shilling, D. G. 2004. Suppression of cogongrass (Imperata cylindrica) by a bioherbicidal fungus and plant competition. Weed Sci 52:649653.Google Scholar
Yandoc, C. B., Charudattan, R., and Shilling, D. G. 2005. Evaluation of fungal pathogens as biological control agents for cogongrass (Imperata cylindrica). Weed Technol 19:1926.Google Scholar
Yandoc, C. B., Rosskopf, E. N., Pitelli, R. L. C. M., and Charudattan, R. 2006. Effects of selected pesticides on conidial germination and mycelial growth of Dactylaria higginsii, a potential bioherbicide for purple nutsedge. Weed Technol 20:255260.Google Scholar
Yang, X. B. and TeBeest, D. O. 1992a. Green tree frogs as vectors for the dispersal of Colletotrichum gloeosporioides . Plant Dis 76:12661269.Google Scholar
Yang, X. B. and TeBeest, D. O. 1992b. Rain dispersal of Colletotrichum gloeosporioides in simulated rice field conditions. Phytopathology 82:12191222.Google Scholar
Yang, X. B. and TeBeest, D. O. 1993. Epidemiological mechanisms of mycoherbicide effectiveness. Phytopathology 83:891893.Google Scholar
Yang, X. B. and TeBeest, D. O. 1994. Distribution and grasshopper transmission of northern jointvetch anthracnose in rice. Plant Dis 78:130133.Google Scholar
Zettler, F. W. and Freeman, T. E. 1972. Plant pathogens as biocontrols of aquatic weeds. Ann. Rev. Phytopathol 10:455470.Google Scholar