Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T14:30:40.131Z Has data issue: false hasContentIssue false

Purple Nutsedge Control with Allyl Isothiocyanate under Virtually Impermeable Film Mulch

Published online by Cambridge University Press:  20 January 2017

Sanjeev K. Bangarwa*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
Jason K. Norsworthy
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704
*
Corresponding author's E-mail: [email protected].

Abstract

Nutsedge control is challenging in commercial vegetable production in the absence of methyl bromide, and therefore, an effective alternative is needed. This study investigated allyl isothiocyanate (ITC) as a methyl bromide alternative for purple nutsedge control under polyethylene-mulch. Greenhouse experiments were conducted to compare the retention of allyl ITC in treated soil (3,000 nmol g−1) under low-density polyethylene (LDPE) and virtually impermeable film (VIF) mulches. Field experiments were conducted to evaluate the effectiveness of allyl ITC (6 rates: 0, 15, 75, 150, 750, 1500 kg ai ha−1) under VIF mulch against purple nutsedge. Additionally, a standard treatment of methyl bromide+chloropicrin (67 : 33%) at 390 kg ai ha−1 under LDPE mulch was included for comparison. In the greenhouse experiment, the predicted half-life of allyl ITC under LDPE and VIF mulch was 0.15 and 0.59 d, respectively. In the field experiment, it was predicted that allyl ITC at 1,240 and 1,097 kg ha−1 under VIF mulch is required to control purple nutsedge shoot and tubers equivalent to methyl bromide + chloropicrin at 4 wk after treatment (WAT). It is concluded that allyl ITC under VIF mulch would need to be applied at 2.8 to 3.2 times the standard treatment of methyl bromide + chloropicrin under LDPE mulch for commercially acceptable purple nutsedge control.

El control de Cyperus rotundus es un reto en la producción comercial de vegetales en ausencia de methyl bromide, y por esto se necesita una alternativa efectiva. Este estudio investigó el uso de allyl isothiocyanate (ITC) como alternativa al methyl bromide para el control de C. rotundus bajo cobertura de polyethylene. Se realizaron experimentos de invernadero para comparar la retención de allyl ITC en suelos tratados (3,000 nmol g−1) bajo coberturas de polyethylene de baja densidad (LDPE) y de láminas virtualmente impermeables (VIF). Se realizaron experimentos de campo para evaluar la efectividad contra C. rotundus de allyl ITC (6 dosis: 0, 15, 75, 150, 1500 kg ai ha−1) bajo cobertura VIF. Adicionalmente, se incluyó un tratamiento estándar de methyl bromide + chloropicrin (67:33%) a 390 kg ai ha−1 bajo cobertura LDPE para fines de comparación. En el experimento de invernadero, la vida media predicha de allyl ITC bajo coberturas de LDPE y VIF fue 0.15 y 0.59 d, respectivamente. En el experimento de campo, se predijo que se requiere allyl ITC a 1,240 y 1,097 kg ha−1 bajo cobertura VIF para controlar la parte aérea y los tubérculos de C. rotundus a niveles equivalentes a methyl bromide + chloropicrin a 4 semanas después del tratamiento (WAT). Se concluyó que allyl ITC bajo cobertura VIF debería ser aplicado de 2.8 a 3.2 veces el tratamiento estándar de methyl bromide + chloropicrin bajo cobertura LDPE para controlar C. rotundus a niveles comercialmente aceptables.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Austerweil, M, Steiner, B, Gamliel, A (2006) Permeation of soil fumigants through agricultural plastic films. Phytoparasitica 34:491501 Google Scholar
Bangarwa, SK, Norsworthy, JK, Gbur, EE, Mattice, JD (2010) Phenyl isothiocyanate performance on purple nutsedge under VIF film mulch. HortTechnology 20:402408 Google Scholar
Brown, PD, Morra, MJ (1995) Glucosinolate-containing plant tissues as bioherbicides. J Agric Food Chem 43:30703074 Google Scholar
Chase, CA, Sinclair, TR, Shilling, DG, Gilreath, JP, Locascio, SJ (1998) Light effects on rhizome morphogenesis in nutsedges (Cyperus spp.): implications for control by soil solarization. Weed Sci 46:575580 Google Scholar
Drobinca, L, Kristian, P, Augustin, J (1977) The chemistry of the NCS group. Pages 10031197 in Patai, S., ed The Chemistry of Cyanates and their Derivatives. New York: Wiley Google Scholar
Duniway, JM (2002) Status of chemical alternatives of methyl bromide for pre-plant fumigation in soil. Phytopathology 92:13371343 Google Scholar
Friedman, T, Horowitz, M (1971) Biological active substances in subterranean parts of purple nutsedge. Weed Sci 19:398401 Google Scholar
Fenwick, GR, Heaney, RK, Mullin, WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123201 Google Scholar
Gardiner, JB, Morra, MJ, Eberlein, CV, Brown, PD, Borek, V (1999) Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. J Agric Food Chem 47:38373842 Google Scholar
Hauser EW (1962a) Establishment of nutsedge from space planted tubers. Weeds 10:209212 Google Scholar
Hauser EW (1962b) Development of purple nutsedge under field conditions. Weeds 10:315321 Google Scholar
Holm, LG, Plucknett, DL, Pancho, JV, Herberger, JP (1991) The World's Worst Weeds. Malabar, FL: Kriegar Google Scholar
Horowitz, M (1972) Effect of frequent clipping on three perennial weeds, Cyanodon dactylon (L.) Pers., Sorghum halepense (L.) Pers., and Cyperus rotundus L. Expl Agric 8:225234 Google Scholar
Matthiessen, JN, Shackleton, MA (2005) Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates. Pest Manag Sci 61:10431051 Google Scholar
Mattner, SW, Porter, IJ, Gouner, RK, Shanks, AL, Wren, DJ, Allen, D (2008) Factors that impact on the ability of biofumigants to suppress fungal pathogens and weeds in strawberry. Crop Prot 27:11651173 Google Scholar
Norsworthy, JK, Meehan, JT IV (2005a) Herbicidal activity of eight isothiocyanates on Texas panicum (Panicum texanum), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Sci 53:515520 Google Scholar
Norsworthy, JK, Meehan, JT IV (2005b) Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci 53:884890 Google Scholar
Norsworthy, JK, Malik, MS, Jha, P, Oliveira, MJ (2006) Effects of isothiocyanates on purple (Cyperus rotundus L.) and yellow nutsedge (Cyperus esculentus L.). Weed Biol Manag 6:131138 Google Scholar
Peterson, J, Belz, R, Walker, F, Hurle, K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:3743 Google Scholar
Santos, BM, Gilreath, JP, Siham, MN (2007) Comparing fumigant retention of polyethylene mulches for nutsedge control in Florida spodosols. HortTechnology 17:308311 Google Scholar
Sarwar, M, Kirkegaard, J, Wong, PTW, Desmarchelier, JM (1998) Biofumigation potential of brassicas. Part III: in vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant Soil 201:103112 Google Scholar
Schabenberger, O, Pierce, FJ (2002) Contemporary statistical models for the plant and soil sciences. Boca Raton, FL: CRC. Pp 213222 Google Scholar
Siriwardana, G, Nishimoto, RK (1987) Propagules of purple nutsedge (Cyperus rotundus) in soil. Weed Technol 1:217220 Google Scholar
Stoller, EW, Sweet, R D (1987) Biology and life cycle of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technol 1:6673 Google Scholar
Vaughn, SF, Boydston, RA (1997) Volatile allelochemicals released by crucifer green manures. J Chem Ecol 23:21072116 Google Scholar
Wang, D, Yates, SR, Ernst, FF, Gan, J, Jury, WA (1997) Reducing methyl bromide emission with a high barrier plastic film and reduced dosages. Environ Sci Technol 31:36863691 Google Scholar
Webster, TM (2005) Patch expansion of purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) with and without polyethylene mulch. Weed Sci 53:839845 Google Scholar
Yates, SR, Gan, J, Papiernik, SK, Dungan, R, Wang, D (2002) Reducing the fumigant emission after soil application. Phytopathology 92:13441348 Google Scholar
Zasada, IA, Ferris, H (2004) Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles. Soil Biol Biochem 36:10171024 Google Scholar