Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T19:30:19.288Z Has data issue: false hasContentIssue false

Potato Response to Simulated Glyphosate Drift

Published online by Cambridge University Press:  20 January 2017

Joel Felix*
Affiliation:
Oregon State University/Malheur Experiment Station, 595 Onion Ave., Ontario, OR 97914
Rick Boydston
Affiliation:
Agricultural Research Service, United States Department of Agriculture, Irrigated Agriculture Research and Extension Center, Prosser, WA 99350-9687
Ian C. Burke
Affiliation:
Washington State University, 163 Johnson Hall, P.O. Box 646420, Pullman, WA 99164-6420
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated glyphosate drift on ‘Ranger Russet’ potato, including visual injury, shikimic acid accumulation, and tuber yield. Glyphosate was applied at 8.5, 54, 107, 215, and 423 g ae ha−1; which corresponds to 0.01, 0.064, 0.126, 0.254, and 0.5 of the lowest recommended (846 g ha−1) single application dose for glyphosate-resistant corn and sugar beet. Glyphosate was applied when potato plants were at 10-cm height, stolon hooking, tuber initiation, or bulking stage. The greatest visual foliar injury was observed when glyphosate was applied at a dose of 54 g ha−1 or greater and potato plants were at the hooking stage. The lowest foliar injury was observed when glyphosate was applied to potato plants at the bulking stage. The I50 glyphosate dose at 42 d after treatment (DAT) was estimated to be 167 g ha−1 for potatoes sprayed at the hooking stage. The corresponding glyphosate dose to result in 50% injury for potatoes sprayed at tuber initiation, 10-cm height, and bulking stages were 129%, 338%, and 438%, respectively, greater than hooking stage. The U.S. No.1 potato yield was inversely related to vine injury and shikimic acid accumulation. Shikimic acid accumulation increased when glyphosate was applied at 107 g ha−1 or greater. U.S. No.1 potato yield was reduced by 46% and 84% relative to the untreated control (55 and 76 T/ha) when glyphosate was applied at 107 g ha−1 to plants in the hooking stage at Ontario and Paterson, respectively. Tuber yields at both sites were lowest when glyphosate was applied at hooking and tuber initiation stages.

En 2008 se realizaron estudios de campo en Ontario, OR y Paterson, WA para determinar el efecto de la diseminación o rociado no intencional de glifosato en el daño de papa ‘Ranger Russet’, en la acumulación del ácido shikímico y en el rendimiento del tubérculo. El glifosato fue aplicado a 8.5, 54, 107, 215 y 423 g ea ha−1, lo que corresponde a 0.01, 0.064, 0.126, 0.254 y 0.5 de la dosis más baja recomendada (846 g ha−1) en una sola aplicación para maíz y remolacha azucarera resistentes a glifosato. El glifosato fue aplicado cuando las plantas de papa tenían: 10 cm de altura, iniciación temprana del tubérculo, iniciación del tubérculo y etapa de ensanchamiento del tubérculo. El mayor daño foliar fue registrado cuando el glifosato se aplicó a una dosis mayor o igual a 54g ha−1 y cuando las plantas estaban en la etapa de iniciación temprana del tubérculo. El menor daño foliar fue observado cuando el glifosato se aplicó a las plantas en la etapa de ensanchamiento del tubérculo. La dosis I50 de glifosato a 42 DAT, fue estimada a ser 167 g ha−1 para papas rociadas en la etapa de iniciación temprana del tubérculo. Las dosis de glifosato que resultaron en un daño del 50% para plantas rociadas en las etapas de iniciación del tubérculo, de10 cm de altura y en la etapa de ensanchamiento del tubérculo fueron 129%, 338% y 438% mayores que en la etapa de iniciación temprana del tubérculo. El rendimiento de la papa U.S. No. 1 fue inversamente relacionado al daño de la enredadera y a la acumulación de ácido shikímico. La acumulación de ácido shikímico aumentó cuando el glifosato fue aplicado igual o mayor a 107 g ha−1. El rendimiento de la papa U.S. No. 1 se redujo en 46 y 84% en relación con el testigo no tratado (55 y 76 T/ha) cuando el glifosato fue aplicado en 107 g ha−1 a plantas en la etapa de iniciación temprana del tubérculo en Ontario y Paterson, respectivamente. Los rendimientos del tubérculo en ambos sitios fueron los más bajos cuando el glifosato se aplicó en las etapas de iniciación temprana del tubérculo y de iniciación de tubérculo.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K., Claassen, M. M., Stahlman, P. W., Geier, P. W., Regehr, D. L., Duncan, S. R., and Heer, W. F. 2003. Grain sorghum response to simulated drift from glufosinate, glyphosate, imazethapyr, and sethoxydim. Weed Technol. 17:261265.Google Scholar
Anonymous. 1991. United States Standards for grades of potatoes. Washington D.C. USDA Agricultural Marketing Service. 10 p.Google Scholar
Anonymous. 2007. Roundup original Max label 63008G5-36. Monsanto Co., 800 North Lindburg Boulevard, St. Louis, MO 63167. 27 p.Google Scholar
Auwarter, C. P. and Hatterman-Valenti, H. 2006. Simulated glyphosate drift in potato (Solanum Tuberosum L.) at different growth stages. North Central Weed Sci. Soc. Abstract 61. [CD-ROM Computer File]. Champaign, IL North Central Weed Sci. Soc. (Dec. 2006).Google Scholar
Berti, A., Dunan, C., Sattin, M., Zanin, G., and Westra, P. 1996. A new approach to determine when to control weeds. Weed Sci. 44:496503.Google Scholar
Bode, L. E. 1987. Spray application technology. Pages 85110. In McWhorter, C. G. and Gebhardt, M. R., eds. Methods of Applying Herbicides. Monograph 4. Champaign, IL Weed Science Society of America.Google Scholar
Buehring, N. W., Massey, J. H., and Reynolds, D. B. 2003. The effect of sublethal rates of glyphosate on shikimate accumulation in corn (Zea mays). Proc. South. Weed. Sci. Soc. 56:323.Google Scholar
Burke, I., Thomas, C. W. E., Pline-Srnić, W. A., Fisher, L. R., Smith, W. D., and Wilcut, J. W. 2005. Yield and physiological response of flue-cured tobacco to simulated glyphosate drift. Weed Technol. 19:255260.Google Scholar
Cromartie, T. H. and Polge, N. D. 2000. An improved assay for shikimic acid and its use as a monitor for the activity of sulfosate. Proc. Weed Sci. Soc. Amer. 40:291.Google Scholar
Deeds, Z. A., Al-Khatib, K., Peterson, D. E., and Stahlman, P. W. 2006. Wheat response to simulated drift of glyphosate and imazamox applied at two growth stages. Weed Technol. 20:2331.Google Scholar
Eberlein, C. V. and Guttieri, M. J. 1994. Potato (Solanum tuberosum) response to simulated drift of imidazolinone herbicides. Weed Sci. 42:7075.Google Scholar
Eberlein, C. V., Westra, P., Haderlie, L. C., Whitmore, J. C., and Guttieri, M. J. 1997. Herbicide drift and carryover injury in potatoes. Pacific Northwest Extension Publ. 498. 15 p.Google Scholar
Ellis, J. M., Griffin, J. L., Linscombe, S. D., and Webster, E. P. 2003. Rice (Oryza sativa) and corn (Zea mays) response to simulated drift of glyphosate and glufosinate. Weed Technol. 17:452460.Google Scholar
Hanks, J. E. 1995. Effect of drift retardant adjuvants on spray droplet size of water and paraffinic oil applied at ultralow volume. Weed Technol. 9:380384.Google Scholar
Hatterman-Valenti, H. M. and Auwarter, C. P. 2009. Glyphosate drift to dryland red potatoes. North Central Weed Sci. Soc. Proc. 64:50.Google Scholar
Henry, W. B., Koger, C. H., and Shaner, D. L. 2005. Accumulation of shikimate in corn and soybean exposed to various rates of glyphosate. Plant Management Network. http://www.plantmanagementnetwork.org/pub/cm/research/2005/shikimate/. DOI:10.1094/CM-2005-1123-01-RS. Accessed August 9, 2011.Google Scholar
Henry, W. B., Shaner, D. L., and West, M. S. 2007. Shikimate accumulation in sunflower, wheat, and proso millet after glyphosate application. Weed Sci. 55:15.Google Scholar
Hurst, H. R. 1982. Cotton (Gossypium hirsutum) response to simulated drift from selected herbicides. Weed Sci. 30:311315.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50:773786.Google Scholar
Knezevic, S. Z., Streibig, J. C., and Ritz, C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol. 21:840848.Google Scholar
Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., Thomas, W. E., and Wilcut, J. W. 2005. Rice (Oryza sativa) response to drift rates of glyphosate. Pest Manag. Sci. 61:11611167.Google Scholar
Masiunas, J. B. and Weller, S. C. 1988. Glyphosate activity in potato (Solanum tuberosum) under different temperature regimes and light levels. Weed Sci. 36:137140.Google Scholar
Maybank, J., Yoshida, K., and Grover, R. 1978. Spray drift from agricultural pesticide application. Air Pollut. Control Assoc. J. 28:10091014.Google Scholar
Miller, A., Chiu-Ho, T., Hemphill, D., Endres, M., Rodermel, S., and Spalding, M. 1997. Elevated CO2 effects during leaf ontogeny. Plant Physiol. 115:11952000.Google Scholar
Miller, P. C. H. 1993. Spray drift and its measurement. Pages 101122. In Metthews, G. A. and Hislop, E. C., eds. Application Technology for Crop Protection. Wallingford, UK CABI.Google Scholar
Mohhamad-Reza, H., Takahata, Y., Trethewey, R. N., Willmitzer, L., and Sonnewald, U. 2000. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. J. Exp. Bot. 51:439445.Google Scholar
[NASS] National Agricultural Statistics Service. 2005. USDA/NASS: Agricultural chemical usage: 2005 field crops summary. Washington, D.C. United States Department of Agriculture. Ag ch 1(02)a. 185 p.Google Scholar
Pfleeger, T. G., Olszyk, D. M., Plocher, M., and Yilma, S. 2008. Effects of low concentrations of herbicides on full-season, field-grown potatoes. J. Environ. Qual. 37:20702082.Google Scholar
Pline, W. A., Price, A. J., Wilcut, J. W., Edmisten, K. L., and Wells, R. 2001. Absorption and translocation of glyphosate in glyphosate-resistant Gossypium hirsutum as influenced by application methods and growth stage. Weed Sci. 49:460467.Google Scholar
Pline, W. A., Wilcut, J. W., Duke, S. O., Edmisten, K. L., and Wells, R. 2002. Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J. Agric. Food Chem. 50:506512.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Shaner, D. L., Nadler-Hassar, T., Henry, W. B., and Koger, C. H. 2005. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 53:769774.Google Scholar
Singh, B. K. and Shaner, D. L. 1998. Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol. 12:527530.Google Scholar
Smid, D. and Hiller, L. K. 1981. Phytotoxicity and translocation of glyphosate in the potato (Solanum tuberosum) prior to tuber initiation. Weed Sci. 29:218223.Google Scholar
Snipes, C. E., Street, J. E., and Mueller, T. C. 1991. Cotton (Gossypium hirsutum) response to simulated triclopyr drift. Weed Technol. 5:493498.Google Scholar
Stitt, M., von Schaewen, A., and Willmitzer, L. 1990. Sink regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta 183:4050.Google Scholar
Stoller, E. W., Wax, L. M., and Matthiesen, R. L. 1975. Response of yellow nutsedge and soybeans to bentazon, glyphosate, and perfluidone. Weed Sci. 23:215221.Google Scholar
Strand, L. 2006. Integrated Pest Management for Potatoes in the Western United States. 2nd ed. University of California Statewide Integrated Pest Management Program. Publ. 3316. Agriculture and Natural Resources Communication Services, University of California, Oakland, CA 94608. 167 p.Google Scholar
Yates, W. E., Cowden, R. E., and Akesson, N. B. 1985. Drop size spectra from nozzles in high speed airstream. Trans. Am. Soc. Agric. Eng. 28:405410.Google Scholar