Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:41:16.377Z Has data issue: false hasContentIssue false

Phenotypic Plasticity of Chinese Sprangletop (Leptochloa chinensis) in Competition with Seeded Rice

Published online by Cambridge University Press:  20 January 2017

Bhagirath S. Chauhan*
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
David E. Johnson
Affiliation:
Crop and Environmental Sciences Division, International Rice Research Institute, Los Baños, Philippines
*
Corresponding author's E-mail: [email protected]

Abstract

Chinese sprangletop, a C4 species, is one of the most important grass weeds of seeded rice in Asia. Chinese sprangletop biology was studied by growing it alone and in competition with 4 and 12 rice plants. Rice competition did not affect the height of Chinese sprangletop, and the weed grew taller than rice, regardless of the competition. Compared with Chinese sprangletop grown alone, competition from rice reduced Chinese sprangletop leaf number, leaf production rate, tiller number, tiller production rate, leaf area, shoot biomass, relative growth rate, and net assimilation rate. Leaf area and shoot biomass of Chinese sprangletop when grown in competition with 12 rice plants was only 16% and 13%, respectively, of the leaf area and biomass of the weed grown alone.

Leptochloa chinensis, una especie C4, es una de las malezas más importantes en el cultivo del arroz de siembra directa en Asia. Se estudió la biología de esta maleza creciéndola sola y en competencia con 4 y 12 plantas de arroz. La competencia con el arroz no afectó la altura de L. chinensis y la maleza desarrolló mayor altura que el arroz, sin importar la competencia. Comparada con L. chinensis sembrada sola, la competencia del arroz redujo el número de hojas de la maleza, la tasa de producción de hojas, el número y tasa de producción de vástagos, el área foliar, la biomasa del tejido aéreo y las tasas de crecimiento relativo y de asimilación neta. El área foliar y la biomasa del tejido aéreo de L. chinensis cuando se cultivó en competencia con 12 plantas de arroz, fue solamente 16 y 13%, respectivamente, de los valores observados cuando la maleza se sembró sola.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Azmi, M., Chin, D. V., Vongsaroj, P., and Johnson, D. E. 2005. Emerging issues in weed management of direct-seeded rice in Malaysia, Vietnam, and Thailand. Pages 196198. in Rice Is Life: Scientific Perspectives for the 21st Century. Los Baños, Philippines International Rice Research Institute and Tsukuba, Japan: Japan International Research Center for Agricultural Sciences.Google Scholar
Bayer, D. E. and Hill, J. E. 1992. Weeds. Pages 3255 in Flint, M. L. and Ohleneger, B. P. O., eds. Integrated Pest Management for Rice. Oakland, CA University of California Statewide Integrated Pest Management Project, Division of Agriculture and Natural Resources, Publication 3280.Google Scholar
Buhler, D. D., Liebman, M., and Obrycki, J. J. 2002. Review: theoretical and practical challenges to an IPM approach to weed management. Weed Sci. 48:274280.Google Scholar
Carey, V. F. III., Smith, R. J. Jr., and Talbert, R. E. 1994. Interference durations of bearded sprangletop (Leptochloa fascicularis) in rice (Oryza sativa). Weed Sci. 42:180183.Google Scholar
Caton, B. P., Foin, T. C., and Hill, J. E. 1997. Phenotypic plasticity of Ammannia spp. in competition with rice. Weed Res. 37:3338.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2008. Germination ecology of Chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Sci. 56:820825.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2009. Seed germination ecology of Portulaca oleracea: an important weed of rice and upland crops. Ann. Appl. Biol. 155:6169.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2010. Response of rice flatsedge (Cyperus iria) and barnyardgrass (Echinochloa crus-galli) to rice interference. Weed Sci. 58:204208.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2011. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 121:226231.Google Scholar
Chauhan, B. S., Pame, A. R. P., and Johnson, D. E. 2011a. Compensatory growth of ludwigia (Ludwigia hyssopifolia) in response to interference of direct-seeded rice. Weed Sci. 59:177181.Google Scholar
Chauhan, B. S., Singh, V. P., Kumar, A., and Johnson, D. E. 2011b. Relations of rice seeding rates to crop and weed growth in aerobic rice. Field Crops Res. 121:105115.Google Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, UK Cambridge University Press. 332 p.Google Scholar
Galinato, M. I., Moody, K., and Piggin, C. M. 1999. Upland Rice Weeds of South and Southeast Asia. Makati City, Philippines International Rice Research Institute. 156 p.Google Scholar
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.Google Scholar
Gardner, F. P., Pearce, R. B., and Mitchell, R. L. 1985. Carbon fixation by crop canopies. Pages 3168 in Gardner, F. P., Pearce, R. B., and Mitchell, R. L. Physiology of Crop Plants. Ames, IA Iowa State University Press.Google Scholar
GenStat 8.0. 2005. GenStat Release 8 Reference Manual. Oxford, U.K. VSN International. 343 p.Google Scholar
Gibson, K. D. and Fischer, A. J. 2001. Relative growth and photosynthetic response of water-seeded rice and Echinochloa oryzoides (Ard.) Fritsch to shade. Int. J. Pest Manag. 47:305309.Google Scholar
Gibson, K. D. and Fischer, A. J. 2004. Competitiveness of rice cultivars as a tool for crop-based weed management. Pages 517537 in Inderjit, , ed. Weed Biology and Management. The Netherlands Kluwer Academic.Google Scholar
Gibson, K. D., Fischer, A. J., and Foin, T. C. 2001. Shading and the growth and photosynthetic responses of Ammannia coccinea . Weed Res. 41:5967.Google Scholar
Gibson, K. D., Fischer, A. J., and Foin, T. C. 2004. Compensatory responses of late watergrass (Echinochloa phyllopogon) and rice to resource limitations. Weed Sci. 52:271280.Google Scholar
Grundy, A. C., Mead, A., Burston, S., and Overs, T. 2004. Seed production of Chenopodium album in competition with field vegetables. Weed Res. 44:271281.Google Scholar
Håkansson, S. 2003. Weeds and Weed Management on Arable Land—An Ecological Approach. UK CABI. 274 p.Google Scholar
Harper, J. L. 1977. Population Biology of Plants. London Academic. 892 p.Google Scholar
Hill, J. E., Smith, R. J. Jr., and Bayer, D. E. 1994. Rice weed control: current technology and emerging issues in the United States. Pages 371391 in Proceedings of the Third International Temperate Rice Conference. New South Wales, AustraliaGoogle Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. The World's Worst Weeds: Distribution and Biology. Malabar, FL University Press of Hawaii. 609 p.Google Scholar
Johnson, D. E. and Mortimer, A. M. 2008. Issues for weed management in direct-seeded rice and the development of decision-support frameworks. Pages 223228 in Singh, Y., Singh, V. P., Chauhan, B., Orr, A., Mortimer, A. M., Johnson, D. E. and Hardy, B., eds. Direct Seeding of Rice and Weed Management in the Irrigated Rice–Wheat Cropping System of the Indo–Gangetic Plains. Los Baños, Philippines International Rice Research Institute, and Pantnagar (India): Directorate of Experiment Station, G. B. Pant University of Agriculture and Technology.Google Scholar
Labrada, R. 1997. Problems Related to the Development of Weed Management in the Developing World. http://www.fao.org/ag/AGP/AGPP/IPM/Weeds/Download/auldwec.pdf. Accessed: May 7, 2009.Google Scholar
Lemerle, D., Cousens, R. D., Gill, G. S., Peltzer, S. J., Moerkerk, M., Murphy, C. E., Collins, D., and Cullis, B. R. 2004. Reliability of higher seeding rates of wheat for increased competitiveness with weeds in low rainfall environments. J. Agric. Sci. 142:395409.Google Scholar
Marambe, B. 2002. Emerging weed problems in wet-seeded rice due to herbicide use in Sri Lanka Page 430 in Abstracts: International Rice Congress. Beijing, ChinaGoogle Scholar
Norris, R. F. 2003. Echinochloa crus-galli (barnyardgrass) seed rain under irrigated conditions. Asp. Appl. Biol. 69:163170.Google Scholar
Olsen, J., Kristensen, L., and Weiner, J. 2006. Influence of sowing density and spatial pattern of spring wheat (Triticum aestivum) on the suppression of different weed species. Weed Biol. Manag. 6:165173.Google Scholar
Patterson, D. T. 1979. The effects of shading on the growth and photosynthetic capacity of itchgrass (Rottboellia exaltata). Weed Sci. 27:549553.Google Scholar
Patterson, D. T., Meyer, C. R., and Quimby, P. C. Jr. 1978. Effects of irradiance on relative growth rates, net assimilation rates, and leaf area partitioning in cotton and three associated weeds. Plant Physiol. 62:1417.Google Scholar
Rao, A. N., Johnson, D. E., Sivaprasad, B., Ladha, J. K., and Mortimer, A. M. 2007. Weed management in direct-seeded rice. Adv. Agron. 93:153255.Google Scholar
Schlichting, C. D. 1986. The evolution of phenotypic plasticity in plants. Annu. Rev. Ecol. Syst. 17:667693.Google Scholar
Smith, R. J. Jr. 1983. Competition of bearded sprangletop (Leptochloa fascicularis) with rice (Oryza sativa). Weed Sci. 31:120123.Google Scholar