Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T04:56:41.942Z Has data issue: false hasContentIssue false

Patterns Of Resistance To Als Herbicides In Smallflower Umbrella Sedge (Cyperus Difformis) And Ricefield Bulrush (Schoenoplectus Mucronatus)

Published online by Cambridge University Press:  20 January 2017

Roberto Busi*
Affiliation:
Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Grugliasco, 10095, Italy
Francesco Vidotto
Affiliation:
Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Grugliasco, 10095, Italy
Albert J. Fischer
Affiliation:
Plant Sciences Department, University of California, Davis, CA 95616
María D. Osuna
Affiliation:
Departamento de Química Agrícola y Edafología, Escuela Técnica superior de Ingenieros Agrónomos y Montes, Universidad de Córdoba, Córdoba, 14004, Spain
Rafael De Prado
Affiliation:
Departamento de Química Agrícola y Edafología, Escuela Técnica superior de Ingenieros Agrónomos y Montes, Universidad de Córdoba, Córdoba, 14004, Spain
Aldo Ferrero
Affiliation:
Selvicoltura e Gestione del Territorio, Università degli Studi di Torino, Grugliasco, 10095, Italy
*
Corresponding author's E-mail: [email protected].

Abstract

Biotypes of smallflower umbrella sedge and ricefield bulrush resistant to acetolactate synthase (ALS)-inhibiting herbicides have been reported in several rice areas of the world. Here, we present results of a study conducted on whole plants of seven smallflower umbrella sedge and four ricefield bulrush biotypes collected in Italian, Spanish, and Californian rice fields to evaluate cross-resistance to ALS herbicides in these important weeds of temperate rice. The following herbicides were tested: bensulfuron-methyl, halosulfuron, cinosulfuron, imazamox, and bispyribac-sodium. The smallflower umbrella sedge and ricefield bulrush biotypes studied exhibited different cross-resistance patterns, some of which have not been previously reported. The Italian smallflower umbrella sedge biotype was cross-resistant to bensulfuron-methyl, cinosulfuron, imazamox, and bispyribac-sodium, but was susceptible to halosulfuron. One smallflower umbrella sedge biotype from California was also resistant to bensulfuron-methyl, imazamox, and bispyribac-sodium, but had a lower level of resistance to halosulfuron. In contrast, the second smallflower umbrella sedge biotype from California was strongly resistant to halosulfuron and was also resistant to bensulfuron-methyl and bispyribac-sodium, but moderately resistant to imazamox. The Spanish smallflower biotype was resistant to the sulfonylurea herbicides bensulfuron-methyl and halosulfuron. Different responses were observed in ricefield bulrush. The Italian biotype was resistant to the sulfonylureas only, whereas the biotype from California exhibited broad cross-resistance to all the ALS herbicides tested. Knowledge on cross-resistance is needed to formulate herbicide use and weed management strategies for delaying the evolution of resistance to ALS herbicides in rice systems.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baldwin, F. L., Smith, K. L., and Talbert, R. E. 2001. A comparison of Permit, Londax, and mixtures for control of yellow nutsedge and broadleaf weeds in rice. Research Series—Arkansas Agricultural Experiment Station. 485:5357.Google Scholar
Beckie, H. J., Heap, I. M., Smeda, R. J., and Hall, L. M. 2000. Screening for herbicide in weeds. Weed Technol. 14:428445.CrossRefGoogle Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117385.CrossRefGoogle ScholarPubMed
Blancaver, M. E. A., Kazuyuki, I., and Kenji, U. 2001. Resistance of Rotala indica Koehne var. uliginosa Koehne to sulfonylurea herbicides. Weed. Biol. Manag. 1:209215.Google Scholar
Blancaver, M. E. A., Kazuyuki, I., and Kenji, U. 2002. Response of the sulfonylurea herbicide-resistant Rotala indica Koehne var. uliginosa Koehne to bispyribac sodium and imazamox. Weed. Biol. Manag. 2:6063.CrossRefGoogle Scholar
Brain, P. and Cousens, R. 1989. An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res. UK 29:9396.Google Scholar
Busi, R., Vidotto, F., Ferrero, A., Fischer, A. J., Osuna, M. D., and De Prado, R. 2004. Patterns of resistance to ALS-inhibitors in Cyperus difformis and Schoenoplectus mucronatus at whole plant level. In Ferrero, A., Vidotto, F., eds. Proceedings of the Conference Challenges and Opportunities for Sustainable Rice-Based Production Systems, 13–15 September, 2004. Torino, Italy Edizioni Mercurio, Vercelli. 2731.Google Scholar
Calha, I. M., Machado, C., and Rocha, F. 1999. Resistance of Alisma plantago-aquatica to sulfonylurea herbicides in Portuguese rice fields. Hydrobiologia 416:289293.CrossRefGoogle Scholar
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase-inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.Google Scholar
Devine, M. D., Marles, M. A. S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.CrossRefGoogle Scholar
Devine, M. D. and Preston, C. 2000. The molecular basis of herbicide resistance. in Cobb, A.H., Kirkwood, R.C., eds. Herbicides and Their Mechanisms of Action. Boca Raton, FL CRC Press. 71104.Google Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci. 51:312318.Google Scholar
Dill, G. M. 2005. Glyphosate-resistant crops: history, status and future. Pest Manag. Sci. 61:219224.CrossRefGoogle Scholar
Duke, S. O. 2005. Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag. Sci. 61:211218.Google Scholar
European Commission 2003. Opinion of the Scientific Committee on Plants on the Draft Guidance Document on the Environmental Risk Assessment of Active Substances Used on Rice in the EU for Annex I Inclusion. Pages 112. European Commission—Health and Consumer Protection Directorate-General—Scientific Committee on Plants. Web page: http://europa.eu.int/comm/food/fs/sc/scp/out144_ppp_en.pdf. Accessed April 15, 2005.Google Scholar
Fischer, A. J., Bayer, D. E., Carriere, M. D., Ateh, C. M., and Yim, K. O. 2000. Mechanism of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession. Pestic. Biochem. Physiol. 68:156165.CrossRefGoogle Scholar
Fischer, A. J., Cheetham, D. P., Vidotto, F., and De Prado, R. 2004. Enhanced effect of thiobencarb on bispyribac-sodium control of E. phyllopogon (Stapf) Koss in California rice (Oryza sativa L.). Weed Biol. Manag. 4:206212.Google Scholar
Graham, R. J., Pratley, J. E., Slater, P. D., Humphreys, E., Murray, E. A., Clampett, W. S., and Lewin, L. G. 1994. Herbicide resistance in Cyperus difformis, a weed of New South Wales rice crops. in. Proceedings of Temperate Rice Conference—Achievements and Potential. Leeton, New South Wales, Australia Griffith, Australia: Temperate Rice Conference Organising Committee. 433435.Google Scholar
Guttieri, M. J., Eberlein, C. V., Mallory-Smith, C. A., Thill, D. C., and Hoffman, D. L. 1992. DNA sequence variation in Domain A of the acetolactate synthase genes of herbicide-resistant and -susceptible weed biotypes. Weed Sci. 40:670676.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia). Weed Sci. 43:175178.CrossRefGoogle Scholar
Hanson, B. D., Park, K. W., Mallory-Smith, C. A., and Thill, D. C. 2004. Resistance of Comelina microcarpa to acetolactate synthase inhibiting herbicides. Weed Res. 44:187194.Google Scholar
Heap, I. M. 2005. International Survey of Herbicide Resistant Weeds. Web page: http://www.weedscience.com. Accessed May 11, 2005.Google Scholar
Hill, J. E., Carriere, M. D., Cook, J. F., Butler, T. D., Lana, P. J., and Hare, J. 1994. Londax resistance management strategies for California rice. Calif. Weed Confer. 46:180185.Google Scholar
Kohara, H., Konno, K., and Takekawa, M. 1999. Occurrence of sulfonylurea-resistant biotypes of Scripus juncoides Roxb. var. ohwianus. T. Koyama in paddy fields of Hokkaido prefecture. Weed Res. (Japan) 44:228235.Google Scholar
Kuk, Y. I., Jung, H. I., Kwon, O. D., Lee, D. J., Burgos, N. R., and Guh, J. O. 2003a. Sulfonylurea herbicide-resistant Monochoria vaginalis in Korean rice culture. Pest Manag. Sci. 59:949961.Google Scholar
Kuk, Y. I., Kim, K. U., Kwon, O. D., Lee, D. J., Burgos, N. R., Sunyo, J., and Guh, J. O. 2003b. Cross-resistance pattern and alternative herbicides for Cyperus difformis resistant to sulfonylurea herbicides in Korea. Pest Manag. Sci. 60:8594.Google Scholar
Larelle, D., Mann, R., Cavanna, S., Bernes, R., Duriatti, A., and Mavrotas, C. 2003. Penoxsulam, a new broad spectrum rice herbicide for weed control in European Union paddies. in. The BCPC International Congress: Crop Science and Technology, Volumes 1 and 2. Proceedings of an international congress held at the SECC 10–12 November 2003, Glasgow, UK. Alton, UK British Crop Protection Council. 7580.Google Scholar
Mallory-Smith, C. A., Thill, D. C., Alcocer-Ruthling, M., and Thompson, C. R. 1992. Growth comparison of sulfonylurea resistant and susceptible biotypes. in. Proceedings of the First International Weed Control Congress. Melbourne, Australia Weed Science Society of Victoria. 301303.Google Scholar
Merotto, A., Osuna, M. D., Fischer, A. J., and Jasieniuk, M. 2005. Distribution of cross-resistance patterns to ALS-inhibiting herbicides in Cyperus difformis L. in California rice [Abstract]. Weed Sci. Soc. Am. 45:46.Google Scholar
Miyahara, M., Guh, J. O., and Lee, D. J. 1998. Occurrence of resistant weeds to sulfonylurea herbicides in Japan. Korean J. Weed Sci. 18:268279.Google Scholar
Osuna, M. D., Vidotto, F., Fischer, A. J., Bayer, D. E., De Prado, R., and Ferrero, A. 2002. Cross-resistance to bispyribac-sodium and bensulfuron-methyl in Echinochloa phyllopogon and Cyperus difformis . Pestic. Biochem. Physiol. 73:917.Google Scholar
Park, K. W. and Mallory-Smith, C. A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44:7177.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. in Powles, S.B., Shaner, D.L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC Press. 2360.CrossRefGoogle Scholar
Roux, F., Matejicek, A., and Reboud, X. 2005. Response of Arabidopsis thaliana to 22 ALS inhibitors: baseline toxicity and cross-resistance of csr1-1 and csr1-2 resistant mutants. Weed Res. 45:220227.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.Google Scholar
Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass and Russian thistle. Pestic. Biochem. Physiol. 42:110118.Google Scholar
Saari, L. L., Cotterman, J. C., and Thill, D. 1994. Resistance to acetolactase synthase inhibiting herbicides. in Powles, S.B., Holtum, J.A.M., eds. Herbicide Resistance in Plants Biology and Biochemistry. Boca Raton, FL Lewis Publishers, CRC Press. 83139.Google Scholar
Sattin, M., Berto, D., Zanin, G., and Tabacchi, M. 1999. Resistance to ALS inhibitors in weeds of rice in north-western Italy. in. Proceedings of 1999 Brighton Crop Protection Conference. Brighton, UK CPC Publications. 783790.Google Scholar
Sattin, M., Scarabel, L., Aloi, C., Arcangeli, G., and Cavanna, S. 2002. Nuove acquisizioni sulle infestanti resistenti in risaia. L'Inform. Agrar. 15:121123. (In Italian.).Google Scholar
Scarabel, L., Carraro, N., Sattin, M., and Varotto, S. 2003. Molecular basis of resistance to ALS inhibitors herbicides in Scirpus mucronatus L.(Palla). in. Proceedings of the XLVII Italian Society of Agricultural Genetics—SIGA Annual Congress 24–27 September, 2003. Verona, Italy. Web site: http://www.siga.unina.it/SIGA2003/Session_V.rtf. 2829.Google Scholar
Schabenberger, O. and Birch, J. B. 2001. Statistical dose–response models with hormetic effects. Hum. Ecol. Risk Assess. 7:891908.Google Scholar
Schmitzer, P. R., Eilers, R. J., and Cséke, C. 1993. Lack of cross-resistance of imazaquin-resistant Xanthium strumarium acetolactate synthase to flumetsulan and chlorimuron. Plant Physiol. 103:281283.CrossRefGoogle ScholarPubMed
Seefeldt, S. S., Jensen, J. E., and Fuerst, P. 1995. Log-logistic analysis of herbicide dose–response relationships. Weed Technol. 9:218227.CrossRefGoogle Scholar
Streibig, J. C., Rudemo, M., and Jensen, J. E. 1993. Dose–response curves and statistical models. in. Herbicide Bioassays. Boca Raton, FL CRC Press. 3055.Google Scholar
Tabacchi, M., Scarabel, L., and Sattin, M. 2004. Herbicide resistance in Italian rice crops: a late-developing but a fast-evolving story. in Ferrero, A., Vidotto, F., eds. Proceedings of the Conference Challenges and Opportunities for Sustainable Rice-Based Production Systems, 13–15 September, 2004. Torino, Italy Edizioni Mercurio, Vercelli. 227238.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Tranel, P. J., Wright, T. R., and Heap, I. M. 2004. ALS mutations from herbicide-resistant weeds. Web site: http://www.weedscience.com. Accessed December, 2004.Google Scholar
Uchino, A. and Watanabe, H. 2002. Mutations in the acetolactate synthanse genes of sulfonylurea-resistant biotypes of Lindernia spp. Weed Biol. Manag. 2:104109.Google Scholar
Valverde, B. E. and Itoh, K. 2001. World rice and herbicide resistance. in Powles, S.B., Shaner, D.L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC Press. 195249.Google Scholar
Veldhuis, L. J., Hall, L. M., O'Donovan, J. T., Dyer, W., and Hall, J. C. 2000. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48:29862990.Google Scholar
Vidotto, F., Busi, R., and Ferrero, A. 2003. Schoenoplectus mucronatus (L.) Palla and Cyperus difformis L. accessions resistant to ALS-inhibitors in Italian rice fields. in. Proceedings of Third International Temperate Rice Conference. Unpaginated CD.Google Scholar
Wagner, J., Haas, H. U., and Hurle, K. 2002. Identification of ALS inhibitor-resistant Amaranthus biotypes using polymerase chain reaction amplification of specific alleles. Weed Res. 42:280286.Google Scholar
Webster, E. P. and Masson, J. A. 2001. Acetolactate synthase-inhibiting herbicides on imidazolinone-tolerant rice. Weed Sci. 49:652657.Google Scholar
White, A. D., Graham, M. A., and Owen, M. D. K. 2003. Isolation of acetolactate synthase homologs in common sunflower. Weed Sci. 51:845853.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci. 46:1323.Google Scholar
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanstrum) populations. Weed Sci. 51:831838.Google Scholar