Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T20:23:21.140Z Has data issue: false hasContentIssue false

Palmer Amaranth Interference and Seed Production in Peanut

Published online by Cambridge University Press:  20 January 2017

Ian C. Burke
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Michelle Schroeder
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
Walter E. Thomas
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
John W. Wilcut*
Affiliation:
Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620
*
Corresponding author's E-mail: [email protected]

Abstract

Studies were conducted to evaluate density-dependent effects of Palmer amaranth on weed and peanut growth and peanut yield. Palmer amaranth remained taller than peanut throughout the growing season and decreased peanut canopy diameter, although Palmer amaranth density did not affect peanut height. The rapid increase in Palmer amaranth height at Goldsboro correspondingly reduced the maximum peanut canopy diameter at that location, although the growth trends for peanut canopy diameter were similar for both locations. Palmer amaranth biomass was affected by weed density when grown with peanut. Peanut pod weight decreased linearly 2.89 kg/ha with each gram of increase in Palmer amaranth biomass per meter of crop row. Predicted peanut yield loss from season-long interference of one Palmer amaranth plant per meter of crop row was 28%. Palmer amaranth seed production was also described by the rectangular hyperbola model. At the highest density of 5.2 Palmer amaranth plants/m crop row, 1.2 billion Palmer amaranth seed/ha were produced.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Askew, S. D. and Wilcut, J. W. 2002. Ladysthumb interference and seed production in cotton. Weed Sci. 50:326332.Google Scholar
Askew, S. D., Wilcut, J. W., and Scott, G. H. 2001. Tropic croton interference in cotton. Weed Sci. 49:184189.CrossRefGoogle Scholar
Barker, W. L., Schroeder, M., Wilcut, C. M., and Wilcut, J. W. 2005. Interference and seed rain dynamics of jimsonweed in peanut. Proc. South. Weed. Sci. Soc. 58:52.Google Scholar
Bensch, C. N., Horak, M. J., and Peterson, D. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci. 51:3743.Google Scholar
Brandenburg, R. L. 2005. Peanut insect and mite management. Pages 6178. in Jordan, D. ed. Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Bridges, D. C., Brecke, B. J., and Barbour, J. C. 1992. Wild poinsettia (Euphorbia heterophylla) interference with peanut (Arachis hypogaea). Weed Sci. 40:3742.Google Scholar
Bridges, D. C. and Chandler, J. M. 1987. Influence of johnsongrass (Sorghum halepense) density and period of competition on cotton yield. Weed Sci. 35:6367.Google Scholar
Cardina, J. and Brecke, B. J. 1989. Growth and development of Florida beggarweed (Desmodium tortuosum) selections. Weed Sci. 37:207210.Google Scholar
Chamblee, R. W., Thompson, L. Jr, and Coble, H. D. 1982. Interference of broadleaf signalgrass (Brachiaria platyphylla) in peanuts (Arachis hypogaea). Weed Sci. 30:4549.Google Scholar
Clewis, S. B., Askew, S. D., and Wilcut, J. W. 2001. Common ragweed interference in peanut. Weed Sci. 49:768772.Google Scholar
Cousens, R. 1987. Theory and reality of weed control thresholds. Plant Prot. Q. 2:1320.Google Scholar
Cousens, R. 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res. 28:281289.Google Scholar
Czapar, G. F., Curry, M. P., and Wax, L. M. 1997. Grower acceptance of economic thresholds for weed management in Illinois. Weed Technol. 11:828831.Google Scholar
Draper, N. R. and Smith, H. 1981. Applied Regression Analysis. New York J. Wiley.Google Scholar
Gleason, H. A. and Cronquist, A. 1991. Family Amaranthaceae, the Amaranth Family. Pages 104108. in Manual of Vascular Plants of Northeastern United States and Adjacent Canada. 2nd ed. New York: New York Botanical Garden.CrossRefGoogle Scholar
Hackett, N. M., Murray, D. S., and Weeks, D. L. 1987. Interference of horsenettle (Solanum carolinense) with peanuts (Arachis hypogaea). Weed Sci. 35:780784.CrossRefGoogle Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Science 48:347355.Google Scholar
Jasieniuk, M., Maxwell, B. D., and Anderson, R. L. et al. 1999. Site-to-site and year-to-year variation in Triticum aestivum-Aegilops cylindrica interference relationships. Weed Sci. 47:529537.Google Scholar
Jordan, D. L. 2004. Weed management in peanuts. Pages 3560. in Jordan, D. ed. Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Keeley, P. E., Carter, C. H., and Thullen, R. J. 1987. Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Science 35:199204.Google Scholar
Klingaman, T. E. and Oliver, L. R. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci. 42:523527.CrossRefGoogle Scholar
McIntosh, M. S. 1983. Analysis of combined experiments. Agron. J. 75:153155.CrossRefGoogle Scholar
Rowland, M. W., Murray, D. S., and Verhalen, L. M. 1999. Full-season Palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Sci. 47:305309.Google Scholar
Royal, S. S., Brecke, B. J., and Colvin, D. L. 1997. Common cocklebur (Xanthium strumarium) interference with peanut (Arachis hypogaea). Weed Science 45:3843.Google Scholar
Rushing, D. W., Murray, D. S., and Verhalen, L. M. 1985. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Sci. 33:815818.Google Scholar
SAS 1998. SAS/STAT User's Guide. Release 7.00. Cary, NC Statistical Analysis Systems Institute. 1028.Google Scholar
Sauer, J. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11:1131.Google Scholar
Shew, B. 2005. Peanut disease management. Pages 79102. in Jordan, D. ed. Peanut Information. Raleigh, NC: North Carolina Cooperative Extension Service.Google Scholar
Smith, D. T., Baker, R. V., and Steele, G. L. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technol. 14:122126.Google Scholar
Snipes, C. E., Buchanan, G. A., Street, J. E., and McGuire, J. A. 1982. Competition of common cocklebur (Xanthium pensylvanicum) with cotton (Gossypium hirsutum). Weed Sci. 30:553556.Google Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52:217221.Google Scholar
Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R., Deen, W., and Shreshta, A. 1999. Weed Thresholds: Theory and Applicability. Pages 929. in Buhler, D.D. ed. Expanding the Context of Weed Management. Binghamton, NY: Food Products Press, an imprint of The Haworth Press, Inc.Google Scholar
Thomas, W. E., Askew, S. D., and Wilcut, J. W. 2004. Tropic croton interference in peanut. Weed Technol. 18:119123.Google Scholar
Walker, R. H., Wells, L. W., and McGuire, J. A. 1989. Bristly starbur (Acanthospermum hispidium) interference in peanuts (Arachis hypogaea). Weed Sci. 37:196200.Google Scholar
Webster, T. M. 2005. Weed survey—southern states. Proc. South Weed Sci. Soc. 58:291306.Google Scholar
York, A. C. and Coble, H. D. 1977. Fall panicum interference in peanuts. Weed Sci. 25:4347.Google Scholar