Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T21:29:40.099Z Has data issue: false hasContentIssue false

Nutritive Value of Field Bindweed (Convolvulus arvensis) Roots as a Potential Livestock Feed and the Effect of Aceria malherbae on Root Components

Published online by Cambridge University Press:  20 January 2017

Brian J Schutte*
Affiliation:
Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003
Leonard Lauriault
Affiliation:
Plant and Environmental Sciences, Department and Agricultural Science Center at Tucumcari, New Mexico State University, Tucumcari, NM 88401
*
Corresponding author's Email: [email protected].

Abstract

Crop producers might be able to better manage field bindweed, an aggressive perennial weed, by utilizing tillage to bring roots to the surface where they can be consumed by ruminant livestock. The objectives of this study were to provide first perspectives on forage nutritive value of field bindweed roots and to determine root chemistry responses to Aceria malherbae, an eriophyid mite that has been released for field bindweed biocontrol in the western United States and Canada. To accomplish these objectives, root systems were sampled from A. malherbae-infested and noninfested plants occurring in an agricultural field in eastern New Mexico. Sampling took place during autumn and spring of each year for 3 consecutive yr. Results indicated that A. malherbae reduced taproot diameter and increased root concentrations of Ca, P, and Mg. However, A. malherbae did not affect root concentrations of acid detergent fiber, nonfiber carbohydrates, neutral detergent fiber (NDF), crude protein (CP), and total digestible nutrients (TDN). Overall means for NDF (33.8%), CP (11.6%), and TDN (72.1%) were similar to those reported for forages commonly grown in the region, suggesting that field bindweed roots might positively contribute to nutritional programs of ruminant livestock. These results justify subsequent studies on livestock responses to field bindweed roots and field bindweed responses to targeted root grazing.

Productores de cultivos en regiones templadas podrían ser capaces de controlar Convolvulus arvensis, una maleza perenne agresiva, utilizando labranza para traer las raíces a la superficie donde estas pueden ser consumidas por ganado rumiante. Los objetivos de este estudio fueron brindar las primeras perspectivas del valor nutritivo como forraje de las raíces de C. arvensis y determinar las respuestas químicas de la raíz a Aceria malherbae, un ácaro eriófido que ha sido liberado para el control biológico de C. arvensis en el oeste de los Estados Unidos y Canadá. Para alcanzar estos objetivos, se muestrearon sistemas de raíces en plantas infestadas y sin infestar con A. malherbae que estaban presentes en campos agrícolas en el este de New Mexico. El muestreo se dio en el otoño y la primavera de cada año, por 3 años consecutivos. Los resultados indicaron que A. malherbae redujo el diámetro de la raíz pivotante e incrementó la concentración de Ca, P, y Mg en las raíces. Sin embargo, A. malherbae no afectó las concentraciones de fibra detergente ácida, carbohidratos no-fibrosos, fibra detergente neutral (NDF), proteína cruda (CP), y los nutrientes digeribles totales (TDN). Promedios generales de NDF (33.8%), CP (11.6%), y TDN (72.1%) fueron similares a los reportados para forrajes comúnmente producidos en la región, lo que sugiere que las raíces de C. arvensis podrían contribuir en forma positiva a los programas nutricionales para ganado rumiante. Estos resultados justifican la realización de más estudios sobre la respuesta del ganado a las raíces de C. arvensis y las respuestas de esta maleza al pastoreo enfocado en sus raíces bajo condiciones de campo.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, EO (1968) Range use, foods, condition and productivity of white-tailed deer in Montana. J Wildl Manag 32:130141 Google Scholar
Bakke, AI, Gaessler, WG, Loomis, WE (1939) Relation of root reserves to control of European bindweed Convolvulus arvensis L. Pages 115144 in Iowa State College of Agriculture and Mechanic Arts, Agricultural Experiment Station Research Bulletin 254. Ames, IAGoogle Scholar
Boldt, PE, Sobhian, R (1993) Release and establishment of Aceria malherbae (Acari, Eriophyidae) for control of field bindweed in Texas. Environ Entomol 22:234237 Google Scholar
Boydston, RA, Williams, MM (2004) Combined effects of Aceria malherbae and herbicides on field bindweed (Convolvulus arvensis) growth. Weed Sci 52:297301 Google Scholar
Britten, DC, Schuster, GL, Michels, GJ, Owings, DA (2003) Using cold-stored or overwintering Aceria malherbae Nuzzaci (Acarina: Eriophyiidae), a gall-forming eriophyiid mite, for infestation of field bindweed. Southwest Entomol 28:273280 Google Scholar
Broderick, GA (1994) Quantifying forage protein quality. Pages 200228 in Fahey, GC Jr., Collins, M, Mertens, DR, Moser, LE, eds. Forage Quality, Evaluation, and Utilization. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Google Scholar
Choat, WT, Krehbiel, CR, Duff, GC, Kirksey, RE, Lauriault, LM, Rivera, JD, Capitan, BM, Walker, DA, Donart, GB, Goad, CL (2003) Influence of grazing dormant native range or winter wheat pasture on subsequent finishing cattle performance, carcass characteristics, and ruminal metabolism. J Anim Sci 81:31913201 Google Scholar
Hoss, NE, Al-Khatib, K, Peterson, DE, Loughin, TM (2003) Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci 51:110117 Google Scholar
Lauriault, LM, Thompson, DC, Pierce, JB, Michels, GJ, Hamilton, WV. 2004. Managing Aceria malherbae gall mites for control of field bindweed. Circular 600. Las Cruces, NM: New Mexico State University, Collge of Agriculture and Home Economics Cooperative Extension Service. 14 pGoogle Scholar
Marten, GC, Shenk, JS, Barton, FE II, eds. (1989) Near Infrared Reflectance Spectroscopy (NIRS): Analysis of Forage Quality. U.S. Department of Agriculture, Agriculture Handbook No. 643. Springfield, Va: National Technical Information Service. 110 pGoogle Scholar
McCartney, D, Fraser, J, Ohama, A (2009) Potential of warm-season annual forages and Brassica crops for grazing: A Canadian Review. Can J Anim Sci 89:431440 Google Scholar
Miler, O, Straile, D (2010) How to cope with a superior enemy? Plant defence strategies in response to annual herbivore outbreaks. J Ecol 98:900907 Google Scholar
Moore, KJ, Hatfield, RD (1994) Carbohydrates and forage quality. Pages 229280 in G. C. Fahey, GC Jr., Collins, M, Mertens, DR, Moser, LE, eds. Forage Quality, Evaluation, and Utilization. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Google Scholar
Nelson, J (1987) Performance of Four Forage Turnip Varieties at Madras, Oregon, 1986–1987. Annual Report of the Central Oregon Agricultural Research Center. http://oregonstate.edu/dept/coarc/sites/default/files/publication/87_forage_turnip_variety.pdf. Accessed November 26, 2014Google Scholar
NMSU (2014) New Mexico State University, College of Agricultural, Consumer and Environmental Sciences, Variety Test Reports. http://aces.nmsu.edu/pubs/variety_trials/welcome.html. Accessed November 26, 2014Google Scholar
NRC (1996) Nutrient Requirements of Beef Cattle. Seventh Revised edn. Washington, DC: National Academy Press. 242 pGoogle Scholar
NRC (2001) Nutrient Requirements of Dairy Cattle. Seventh Revised edn. Washington, DC: National Academy Press. 381 pGoogle Scholar
Patankar, R, Starr, G, Mortazavi, B, Oberbauer, SF, Rosenblum, A (2013) The effects of mite galling on the ecophysiology of two arctic willows. Arct Antarct Alp Res 45:99106 Google Scholar
Paterson, JA, Belyea, RL, Bowman, JP, Kerley, MS, Williams, JE (1994) The impact of forage quality and supplementation regimen on ruminant animal intake and performance. Pages 59114 in Fahey, GC Jr., Collins, M, Mertens, DR, Moser, LE, eds. Forage Quality, Evaluation, and Utilization. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Google Scholar
Pierre, CS, Busso, CA, Montenegro, O, Rodriguez, GD, Giorgetti, HD, Montani, T, Bravo, OA (2004) Defoliation tolerance and ammonium uptake rate in perennial tussock grasses. J Range Manag 57:8288 Google Scholar
Pinheiro, JC, Bates, DM (2000) Mixed-effects Models in S and S-Plus. New York: Springer Verlag. 528 pGoogle Scholar
Reicosky, DC, Dugas, WA, Torbert, HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Till Res 41:105118 Google Scholar
Rosenthal, SS (1983) Current status and potential for biological control of field bindweed, Convolvulus arvensis, with Aceria convolvuli . Pages 5760 in Hoy, MA, Knutson, L, Cunnigham, GL, eds. Biological Control of Pests with Mites: Publ. 3304. Berkeley, CA: University of California, Div Agric Nat Resources Google Scholar
Smith, L, de Lillo, E, Amrine, JW (2010) Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp Appl Acarol 51:115149 Google Scholar
Spears, JW (1994) Minerals in forage. Pages 281317 in Fahey, GC Jr., Collins, M, Mertens, DR, Moser, LE, eds. Forage Quality, Evaluation, and Utilization. Madison, WI: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc. Google Scholar
Stahler, LM (1948) Shade and soil moisture as factors in competition between selected crops and field bindweed, Convolvulus arvensis . J Am Soc Agron 40:490502 Google Scholar
Taylor, JP, Smith, LM (2005) Migratory bird use of belowground foods in moist-soil managed wetlands in the middle Rio Grande Valley, New Mexico. Wildl Soc Bull 33:574582 Google Scholar
Unger, P, McCalla, T (1980) Conservation tillage systems. Adv Agron 33:142 Google Scholar
Weaver, SE, Riley, WR (1982) The biology of Canadian weeds. 53. Convolvulus arvensis L. Can J Plant Sci 62:461472 Google Scholar
Westra, P, Chapman, P, Stahlman, PW, Miller, SD, Fay, PK (1992) Field bindweed (Convolvulus arvensis) control with various herbicide combinations. Weed Technol 6:949955 Google Scholar