Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T06:17:49.197Z Has data issue: false hasContentIssue false

Multiple Applications of Reduced-Rate Herbicides for Weed Control in Onion

Published online by Cambridge University Press:  20 January 2017

James R. Loken
Affiliation:
Plant Sciences, North Dakota State University, Department 7670, Fargo, ND 58108-6050
Harlene M. Hatterman-Valenti*
Affiliation:
Plant Sciences, North Dakota State University, Department 7670, Fargo, ND 58108-6050
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted at Oakes, Absaraka, and Tappen, ND, in 2006 and repeated at Oakes and Absaraka, ND, in 2007 to evaluate early season weed control of common lambsquarters and redroot pigweed in onion with POST herbicides applied at multiple reduced rates (microrates) and to determine whether microrate herbicide treatments effectively reduced early season broadleaf weed competition, caused crop injury, or affected yield. Application rates of bromoxynil, oxyfluorfen, metribuzin, and acifluorfen were reduced to 0.25, 0.13, and 0.06× of their lowest labeled rate and applied in sequential applications (every 7 d) either two or three times. The 0.25× rate of bromoxynil (70.1 g ae/ha) provided the greatest control of common lambsquarters (95%). The 0.25× rates of bromoxynil and oxyfluorfen (70.1 g ai/ha) provided the greatest control of redroot pigweed (93 and 85%, respectively). Microrate applications of metribuzin or acifluorfen did not effectively control common lambsquarters or redroot pigweed. In 2006, no onion injury was observed. However, in 2007, applications of oxyfluorfen resulted in approximately 15% injury, regardless of the herbicide rate or the number of applications. Plants outgrew symptoms by 4 wk after treatment and were similar to the untreated plants. Onion treated with oxyfluorfen had the greatest total yield, followed by onion treated with bromoxynil. Onion treated with acifluorfen had a greater total marketable bulb yield than onion treated with metribuzin, but yield was considered poor compared to the other herbicide treatments. Three microrate applications provided greater weed control and increased yield compared with two applications across herbicides and rates. Results suggest that microrate applications of bromoxynil and oxyfluorfen will provide early season broadleaf weed control in onion.

Varios experimentos de campo se llevaron a cabo en Oakes, Absaraka y Tappen en Dakota del Norte en 2006 y repetidos en Oakes y Absaraka en 2007, para evaluar en el cultivo de cebolla, el control de Chenopodium album L. y Amaranthus retroflexus L. de crecimiento temprano, con herbicidas POST aplicados en múltiples dosis reducidas (micro-dosis) y para determinar si éstos tratamientos disminuyen efectivamente la competencia de maleza de hoja ancha, los posibles daños al cultivo o el impacto en su rendimiento. Las dosis de aplicación de bromoxynil, oxyfluorfen, metribuzin y acifluorfen fueron reducidas a 0.25, 0.13 y 0.06X de la dosis más baja marcada en la etiqueta y aplicada secuencialmente (cada 7 días) ya sea dos ó tres veces. La dosis de 0.25X (70.1g ia/ha) de bromoxynil proporcionó el mayor control (95%) de Chenopodium album L. Las dosis de 0.25X de bromoxynil y oxyfluorfen (70.1 g ia/ha) proporcionaron los mejores controles (93 y 85% respectivamente) de Amaranthus retroflexus L. Las micro-dosis de metribuzin o acifluorfen no controlaron efectivamente a Chenopodium álbum L ni a Amaranthus retroflexus L. En 2006, no se observó daño alguno en la cebolla. Sin embargo, en 2007, las aplicaciones de oxyfluorfen causaron un daño aproximado de 15%, indistintamente de la dosis del herbicida o del número de aplicaciones. Las plantas dejaron de presentar síntomas a la cuarta semana después del tratamiento y fueron similares al testigo no tratado. La cebolla tratada con oxyfluorfen exhibió el mayor rendimiento total, seguido por el tratamiento con bromoxynil. La cebolla tratada con acifluorfen registró un alto rendimiento total de bulbo comercializable, que la que fue tratada con metribuzin, pero el rendimiento fue considerado pobre comparado con cualquiera de los otros tratamientos de herbicida. Tres aplicaciones de micro-dosis proporcionaron un mejor control de maleza e incrementaron el rendimiento, comparado con dos aplicaciones promediado a través de herbicidas y dosis. Los resultados sugieren que aplicaciones de micro-dosis de bromoxynil y oxyfluorfen en cultivo de cebolla, proporcionarán un control de maleza de hoja ancha, de crecimiento temprano.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahrens, B. A., Cox, D. J., and Budhwar, G. 1990. Use of the arcsine and square root transformations for subjectively determined percentage data. Weed Sci 38:452458.Google Scholar
Anonymous 2005. Buctril® herbicide product label. Research Triangle Park, NC: Bayer CropScience. http://www.cdms.net/LDat/ld405002.pdf. Accessed: November 28, 2007.Google Scholar
Anonymous 2009. Goal® 2×L herbicide product label. Indianapolis, IN: Dow AgroSciences. http://www.cdms.net/LDat/ld5S1002.pdf. Accessed: December 11, 2009.Google Scholar
Ashton, F. M. and Monaco, T. J. 1991. Weed Science: Principles and Practices, 3rd ed. New York: Wiley.Google Scholar
Bell, C. E. and Boutwell, B. E. 2001. Combining bensulide and pendimethalin controls weeds in onions. Calif. Agric 56 (1):3538.Google Scholar
Boydston, R. A. and Seymour, M. D. 2002. Volunteer potato (Solanum tuberosum) control with herbicides and cultivation in onion (Allium cepa). Weed Technol 16:620626.Google Scholar
Brewster, J. L. 1994. Onions and Other Vegetable Alliums. Cambridge, UK: CAB International. 7075, 171–172.Google Scholar
Dale, T. M. 2000. Application method and adjuvant effects on low-dose postemergence herbicide efficacy in sugarbeet (Beta vulgaris). . Fargo, ND: North Dakota State University. 57.Google Scholar
Dale, T. M., Renner, K. A., and Kravchenko, A. N. 2006. Effect of herbicides on weed control and sugarbeet (Beta vulgaris) yield and quality. Weed Technol 20:150156.Google Scholar
Dexter, A. G. 1994. History of sugarbeet (Beta vulgaris) herbicide rate reduction in North Dakota and Minnesota. Weed Technol 8:334337.Google Scholar
Dunan, C. M., Westra, P., Schweizer, E. E., Lybecker, D. W., and Moore, F. D. III. 1995. The concept and application of early economic period threshold: the case of DCPA in onions (Allium cepa). Weed Sci 43:634639.Google Scholar
Egel, D. 2007. Midwest Vegetable Production Guide for Commercial Growers: Relative Effectiveness of Herbicides for Vegetable Crops. http://www.btny.purdue.edu/Pubs/ID/ID-56/herbEffect.pdf. Accessed: November 5. 2007.Google Scholar
Fennimore, S. A. and Doohan, D. J. 2008. The challenges of specialty crop weed control, future directions. Weed Technol 22:364372.Google Scholar
Ghosheh, H. Z. 2004. Single herbicide treatments for control of broadleaved weeds in onion (Allium cepa). Crop Prot 23:539542.Google Scholar
Grundy, A. C., Peters, N. C. B., Rasmussen, I. A., Hartmann, K. M., Sattin, M., Anderson, L., Mead, A., Murdoch, A. J., and Forcella, F. 2003. Emergence of Chenopodium album and Stellaria media of different origins under different climatic conditions. Weed Res 43:163176.Google Scholar
Haar, M. J., Fennimore, S. A., McGiffen, M. E., Lanini, W. T., and Bell, C. E. 2002. Evaluation of preemergence herbicides in vegetable crops. Horttechnology 12:9599.Google Scholar
Hewson, R. T. and Roberts, H. A. 1971. The effect of weed removal at different times on the yield of bulb onions. J. Hortic. Sci 46:471483.Google Scholar
Hopen, H. J. 1972. Growth of common purslane as influencing control and importance as a weed. Weed Sci 20:2023.Google Scholar
Melander, B. and Hartvig, P. 1997. Yield responses of weed-free seeded onions (Allium cepa L.) to hoeing close to the row. Crop Prot 16:687691.Google Scholar
Palczynski, J., Dobrzanski, A., and Anyszka, Z. 2001. Weeds and drilled onion response to postemergence application of tank-mixture herbicides. Veget. Crops Res. Bull 54 (1):125130.Google Scholar
Schumacher, C. E. and Hatterman-Valenti, H. M. 2007. Effect of dose and spray volume on early season broadleaved weed control in Allium using herbicides. Crop Prot 26:11781185.Google Scholar
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci 52:217221.Google Scholar
Swaider, J. M., Ware, G. W., and McCollum, J. P. 1992. Producing Vegetable Crops. 4th ed. Danville, IL: Interstate. 381404.Google Scholar
[USDA] U.S. Department of Agriculture 1997. United States Standards for Grades of Onions (Other than Bermuda-Granax-Grano and Creole Type). http://www.ams.usda.gov/standards/oniother.pdf. Accessed: November 20, 2007.Google Scholar
Woznica, Z., Adamczewski, K., and Szelezniak, E. 2004. Application of herbicide micro-rates in sugar beet production. Prog. Plant Prot 44:523530.Google Scholar
Zollinger, R. 2008. 2008 North Dakota Weed Control Guide. Fargo, ND: North Dakota State University Extension Service Rep. W-253. 135.Google Scholar