Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T19:24:24.908Z Has data issue: false hasContentIssue false

Miscanthus × giganteus Response to Tillage and Glyphosate

Published online by Cambridge University Press:  20 January 2017

Eric K. Anderson
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Thomas B. Voigt
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Germán A. Bollero
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Aaron G. Hager*
Affiliation:
Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected]

Abstract

Miscanthus is a perennial, rhizomatous C4 grass grown in the European Union and studied in the United States as a bioenergy feedstock. U.S. farmers might be more willing to grow this perennial species if methods for its control were established. Experiments were conducted from 2007 to 2009 to evaluate methods to control miscanthus. As glyphosate rate increased from 0 to 3.6 kg ae ha−1 in a greenhouse trial, miscanthus dry weight decreased. Aboveground biomass in the summer following treatments decreased 82, 77, and 95% with fall, spring, and fall followed by spring applications of glyphosate (1.7 kg ae ha−1), respectively, compared with nontreated plots in field experiments. Summer shoot count was reduced by 41% compared with the nontreated control with fall followed by spring glyphosate applications. A second field experiment demonstrated that spring tillage with one or two spring glyphosate applications (2.5 kg ae ha−1 application−1) reduced aboveground dry biomass by 94 and 95%, respectively, and reduced miscanthus shoot number by 38 and 67%, respectively, in the same growing season. These experiments suggest that although glyphosate and tillage can reduce miscanthus biomass, complete control of a mature stand likely will require more than one growing season.

Miscanthus es un zacate C4, perenne, rizomatoso, cultivado en la Unión Europea y estudiado en los Estados Unidos como un forraje bioenergético. Los agricultores de los Estados Unidos estarían más dispuestos a cultivar esta especie perenne si se establecieran métodos para su control. De 2007 a 2009 se realizaron experimentos para evaluar métodos de control de miscanthus. En un estudio en invernadero, al incrementar la dosis de glifosato de 0 a 3.6 kg ea ha−1 el peso seco del miscanthus disminuyó. En el verano, después de los tratamientos, la biomasa de la parte aérea de las plantas disminuyó 82, 77 y 95% con aplicaciones de glifosato (1.7 ea ha−1) en otoño, primavera y otoño seguido de aplicaciones en primavera respectivamente, en comparación con los testigos no tratados, en experimentos de campo. Aplicaciones de glifosato en otoño seguidas de aplicaciones en primavera, redujeron el conteo de tallos en el verano en 41% en comparación con el testigo sin tratar. Un segundo experimento de campo demostró que la labranza en primavera con una o dos aplicaciones de glifosato en la misma estación (2.5 kg ea ha−1 aplicación−1) disminuyó la biomasa seca por encima de la superficie del suelo en 94 y 95%, respectivamente, y redujo el número de tallos de miscanthus en 38 y 67%, respectivamente, en el mismo ciclo de crecimiento. Estos experimentos sugieren que mientras el glifosato y la labranza puedan reducir la biomasa de miscanthus, el control total de una plantación madura probablemente requerirá de más de un ciclo de crecimiento.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ailstock, M. S., Norman, C. M., and Bushmann, P. J. 2001. Common reed Phragmites australis: Control and effects upon biodiversity in freshwater nontidal wetlands. Restor. Ecol. 9:4959.CrossRefGoogle Scholar
Annen, C. A., Tyser, R. W., and Kirsch, E. M. 2005. Effects of a selective herbicide, sethoxydim, on reed canarygrass. Ecol. Restor. 23:99102.CrossRefGoogle Scholar
Barney, J. N. and Ditomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:6470.Google Scholar
Beale, C. V. and Long, S. P. 1997. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C-4-grasses Miscanthus × giganteus and Spartina cynosuroides . Biomass Bioenergy 12:419428.CrossRefGoogle Scholar
Clifton-Brown, J. C., Neilson, B., Lewandowski, I., and Jones, M. B. 2000. The modelled productivity of Miscanthus × giganteus (Greef et Deu) in Ireland. Ind. Crop Prod. 12:97109.Google Scholar
Derr, J. F. 2008a. Common reed (Phragmites australis) response to mowing and herbicide application. Invasive Plant Sci. Manag. 1:1216.Google Scholar
Derr, J. F. 2008b. Common reed (Phragmites australis) response to postemergence herbicides. Invasive Plant Sci. Manag. 1:153157.Google Scholar
DiTomaso, J. M. 2000. Cortaderia jubata . Pages 124127. In Bossard, C. C., Randall, J. M., and Hoshovsky, M. C., eds. Invasive Plants of California's Wildlands. Berkeley, CA University of California Press.Google Scholar
DiTomaso, J. M., Drewitz, J. J., and Kyser, G. B. 2008. Jubatagrass (Cortaderia jubata) control using chemical and mechanical methods. Invasive Plant Sci. Manag. 1:8290.CrossRefGoogle Scholar
Glenn, S., Peregoy, R. S., Hook, B. J., Heimer, J. B., and Wiepke, T. 1986. Sorghum halepense (L.) Pers. control with foliar-applied herbicides in conventional and no-tillage soybeans. Weed Res. 26:245250.CrossRefGoogle Scholar
Harvey, J. and Hutchens, M. 1995. Progress in commercial development of Miscanthus in England. Pages 587593. In Chartier, P., Beenackers, A. A. C. M., and Grassi, G., eds. Biomass for Energry, Environment, Agriculture and Industry—Proceedings of the 8th EC Conference Volume 1. Oxford, UK Elsevier Science.Google Scholar
Heaton, E. A., Clifton-Brown, J., Voigt, T. B., Jones, M. B., and Long, S. P. 2004a. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation Adapt. Strat. Global Change 9:433451.Google Scholar
Heaton, E. A., Voigt, T., and Long, S. P. 2004b. A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:2130.Google Scholar
Hodkinson, T. R., Chase, M. W., and Renvoize, S. A. 2002a. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann. Bot. (Lond.) 89:627636.Google Scholar
Hodkinson, T. R., Chase, M. W., Takahashi, C., Leitch, I. J., Bennett, M. D., and Renvoize, S. A. 2002b. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid miscanthus (Poaceae). Am. J. Bot. 89:279286.Google Scholar
Hodkinson, T. R. and Renvoize, S. 2001. Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull. 56:759760.Google Scholar
Jorgensen, U., Mortensen, J., Kjeldsen, J. B., and Schwarz, K. U. 2003. Establishment, development and yield quality of fifteen Miscanthus genotypes over three years in Denmark. Acta Agric. Scand. Sect. B Soil Plant Sci. 53:190199.Google Scholar
Jorgensen, U. and Muhs, H. 2001. Miscanthus breeding and improvement. Pages 6885. In Jones, M. B., and Walsh, M., eds. Miscanthus for Energy and Fibre. London James & James.Google Scholar
Labovitch, L., Becker, R., and Bohn, J. 1984. Wirestem muhly (Muhlenbergia frondosa (Poir) Fernald) its biology and control. Proc. North Cent. Weed Cont. conf. 107.Google Scholar
Lewandowski, I., Kicherer, A., and Vonier, P. 1995. CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenergy 8:8190.CrossRefGoogle Scholar
Linde-Laursen, I. 1993. Cytogenetic analysis of Miscanthus-giganteus, an interspecific hybrid. Hereditas 119:297300.Google Scholar
Lingenfelter, D. D. and Curran, W. S. 2007. Effect of glyphosate and several ACCase-inhibitor herbicides on wirestem muhly (Muhlenbergia frondosa) control. Weed Technol. 21:732738.Google Scholar
Long, S. P., Dohleman, F., Jones, M. B., Clifton-Brown, J., and Jorgensen, U. 2007. Miscanthus—Panacea for Energy Security and the Midwest Economy or Another Kudzu? The Illinois Steward Magazine 16:1. http://web.extension.uiuc.edu/illinoissteward/openarticle.cfm?ArticleID=5. Accessed: November 21, 2009.Google Scholar
Mack, R. N. 2008. Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci. 56:883888.Google Scholar
McWhorter, C. G. and Hartwig, E. E. 1965. Effectiveness of preplanting tillage in relation to herbicides in controlling johnsongrass [Sorghum halepense] for soybean [Glycine max] production. Agron. J. 57:385389.Google Scholar
Parochetti, J. V., Wilson, H. P., and Burt, G. W. 1975. Activity of glyphosate on johnsongrass. Weed Sci. 23:395400.Google Scholar
Patzoldt, W. L., Tranel, P. J., and Hager, A. G. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Sci. 53:3036.Google Scholar
Powlson, D. S., Riche, A. B., and Shield, I. 2005. Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann. Appl. Biol. 146:193201.Google Scholar
Raghu, S., Anderson, R. C., Daehler, C. C., Davis, A. S., Wiedenmann, R. N., Simberloff, D., and Mack, R. N. 2006. Adding biofuels to the invasive species fire? Science 313:1742–1742.Google Scholar
Raghu, S. and Davis, A. S. 2007. Exotic Grasses as Biofuels—The Concerns. The Illinois Steward Magazine 16:1. http://web.extension.uiuc.edu/illinoissteward/openarticle.cfm?ArticleID=5&Page=3. Accessed: November 21, 2009.Google Scholar
Rensburg, E. V. 1996. Reed eradication under transmission powerlines in South Africa using microlight aircraft. Pages 10951101. in Proceedings of the Second International Weed Control Congress, Copenhagen, Denmark, 25–28 June 1996. Slagelse, Denmark Department of Weed Control and Pesticide Ecology.Google Scholar
Riche, A. B. and Christian, D. G. 2001. Estimates of rhizome weight of Miscanthus with time and rooting depth compared to switchgrass. Asp. Appl. Biol. 147152.Google Scholar
SAS Institute. 2008. The SAS System for Windows, Version 9.2. SAS Institute, Inc: Cary, NC SAS Institute, Inc.Google Scholar
Scally, L., Hodkinson, T. R., and Jones, M. B. 2001. Origins and Taxonomy of Miscanthus. Pages 19. In Jones, M. B., and Walsh, M., eds. Miscanthus for Energy and Fibre. London James & James.Google Scholar
Speller, C. S. 1993. Weed control in Miscanthus and other annually harvested biomass crops for energy or industrial use. Pages 671676. in Brighton Crop Protection Conference, Weeds. Proceedings of an International Conference, Brighton, UK, 22–25 November 1993. Farnham, UK British Crop Protection Council.Google Scholar
Spencer, D. F., Tan, W. L., Liow, P. S., Ksander, G. G., Whitehand, L. C., Weaver, S., Olson, J., and Newhouser, M. 2008. Evaluation of glyphosate for managing giant reed (Arundo donax). Invasive Plant Sci. Manag. 1:248254.Google Scholar
Wagenaar, B. M. and VandenHeuvel, E. J. M. T. 1997. Co-combustion of Miscanthus in a pulverised coal combustor: experiments in a droptube furnace. Biomass Bioenergy 12:185197.Google Scholar