Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T11:18:26.210Z Has data issue: false hasContentIssue false

Microencapsulated Herbicide-Treated Bark Mulches for Nursery Container Weed Control

Published online by Cambridge University Press:  20 January 2017

Hannah M. Mathers*
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210
Luke T. Case
Affiliation:
Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210
*
Corresponding author's E-mail: [email protected].

Abstract

Nursery container preemergence herbicides must be applied multiple times, usually every 6 to 8 wk, in order to maintain acceptable weed control. Nursery growers have identified extended duration of container preemergence activity as a research priority for reduction of herbicide usage and costs. The objective of this study was to determine if the combination of slow-release (microencapsulated [ME]) formulations of alachlor and acetochlor with wood-based organic mulches could provide extended efficacy and reduced phytotoxicity vs. over-the-top (OTT) sprays or mulch alone. Efficacy and phytotoxicity studies were conducted over 3 yr with various plants. Both acetochlor formulation OTT sprays reduced spirea shoot dry weights at 45 and 110 days after treatment (DAT) compared with the controls, and emulsifiable concentrate (EC) acetochlor OTT spray also reduced shoot dry weights of rose. No herbicide-treated bark mulch (TBM) combination reduced rose or spirea shoot dry weights. EC acetochlor + hardwood (in 2003) was the only treatment to provide 100% weed control at 45 and 110 DAT. The addition of EC or ME acetochlor to mulch reduced phytotoxicity and extended efficacy in 2002 and 2003; alachlor EC or ME TBM did not. Regardless of bark type, 3-yr average EC and ME TBM were 80% more effective than untreated bark mulch (UBM) and 83% and 98% more effective at 45 and 110 DAT, respectively than their comparable OTT sprays. Of the eight treatments that received ratings above commercially acceptable, averaged over dates and years, the three providing the least phytotoxicity and greatest extent, consistency, and duration of efficacy were all TBM combinations: EC acetochlor + Douglas fir or hardwood bark, EC acetochlor + pine, and ME acetochlor + pine. TBM-reduced phytotoxicity compared with OTT sprays.

Los herbicidas pre-emergentes para macetas en viveros deben aplicarse m°ltiples veces, usualmente cada 6 u 8 semanas para mantener un control de malezas aceptable. Cultivadores en invernaderos han señalado que lograr una larga duración del efecto pre- emergente de los herbicidas en macetas es una importante prioridad para la investigación, para reducir el uso del mismo así como sus costos. El objetivo de este estudio fue determinar si una combinación de una fórmula de liberación prolongada [micro-encapsulado (“ME”)], de alachlor y acetochlor como tratamiento para el pajote orgánico de madera, podría extender la eficacia y reducir la fitotoxicidad cuando comparado con herbicidas aplicados por aspersión (OTT over-the-top) o con sólo el uso del pajote. Los estudios de eficacia y la reducción de la fitotoxicidad se realizaron por más de tres años en diversas plantas. Las dos formulaciones de acetochlor en aspersiones OTT disminuyeron el peso seco de los brotes de la spirea a los 45 y a los 110 días después del tratamiento (DAT) comparadas con los testigos. Los concentrados emulsificables (EC) de aspersión OTT de acetochlor también redujeron el peso seco de los brotes de rosa. Ninguna combinación de pajote de corteza tratada con herbicida (TBM), redujo el peso seco de los brotes de rosa y de spirea. El acetochlor (EC) + corteza de madera dura (2003) fue el único tratamiento que alcanzó el 100% de control de malezas a los 45 y 110 días después del tratamiento (DAT). La adición de concentrados emulsificables (EC) o el acetochlor micro-encapsulado (ME) al pajote, redujo la fitotoxicidad y prolongó la eficacia en 2002 y 2003 pero no se obtuvieron los mismos resultados con el alachlor EC ni con el herbicida micro-encapsulado como tratamiento para el pajote (ME TBM). Sin importar el tipo de madera, el promedio tomado por tres años, demostró que las combinaciones del pajote tratado con el concentrado emulsificable EC y con el herbicida micro-encapsulado fueron el 80% más efectivas que el pajote no tratado (UBM) y también fueron el 83 y 98% más efectivos a los 45 y 110 días después del tratamiento (DAT) respectivamente que las aspersiones OTT. De los ocho tratamientos que tuvieron resultados por arriba de lo comercialmente aceptable, al promediarlos por fechas y años, los tres que proporcionaron la menor fitotoxicidad y la mayor extensión, consistencia y duración de eficacia, fueron combinaciones de pajote tratado: acetochlor + pajote de abeto Douglas u otra madera dura; acetochlor EC + pino y acetochlor ME + pino. El pajote tratado (TBM) redujo la fitotoxicidad comparado con las aspersiones OTT.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahn, J. K. and Chung, I. M. 2000. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agron. J. 92:11621167.CrossRefGoogle Scholar
Appleton, B. L. and French, S. C. 2000. Weed suppression for container-grown willow oak using copper-treated fabric disks. HortTechnol. 10:204206.Google Scholar
Barolli, S., Ahrens, J. F., and Gray, R. 2005. Longevity of weed control with herbicides for ornamental containers. Proc. Northeast Weed Sci. Soc. 59:42.Google Scholar
Bhandary, R. M., Whitwell, T., and Briggs, J. 1997. Growth of containerized landscape plants is influenced by herbicide residues in irrigation water. Weed Technol. 11:793797.Google Scholar
Billeaud, L. A. and Zajicek, J. M. 1989. Influence of mulches on weed control, soil pH, soil nitrogen content, and growth of Ligustrum japonicum . J. Environ. Hort. 7:155157.Google Scholar
Carr, M. W., Wing, R. E., and Doane, W. M. 1991. Encapsulation of atrazine within a starch matrix by extrusion processing. Cereal Chem. 68:262266.Google Scholar
Case, L. T. and Mathers, H. M. 2003. Long-term effects of herbicide-treated mulches for ornamental weed control. Proc. Northeastern Weed Sci. Soc. 57:39.Google Scholar
Case, L. T. and Mathers, H. M. 2006. Herbicide-treated mulches for weed control in nursery container crops. J. Environ. Hort. 24:8490.Google Scholar
Case, L. T., Mathers, H. M., and Tuttle, N. 2002. Herbicide-treated mulches for ornamental weed control. Proc. Northeastern Weed Sci. Soc. 56:72.Google Scholar
Crossan, C. K., Gilliam, C. H., Keever, G. J., Eakes, D. J., Wehtje, G. R., and Dozier, W. A. Jr. 1997. Weed control in container-grown crops with herbicide coated fertilizers. J. Environ. Hort. 15:138141.Google Scholar
Dailey, O. D. Jr., Dowler, C. C., and Mullinix, B. G. Jr. 1993. Polymeric microcapsules of the herbicides atrazine and metribuzin: preparation and evaluation of controlled-release properties. J. Agric. Food Chem. 41:15171522.Google Scholar
Darden, J. and Neal, J. C. 1999. Granular herbicide application uniformity and efficacy in container nurseries. Proc. South. Nursery Assoc. Res. Conf. 44:427430.Google Scholar
Dunham, C. W. and Fretz, T. A. 1967. Use of mulch incorporated herbicides for control of weed in new ground cover plantings. Proc. Northeast Weed Sci. Soc. 21:190195.Google Scholar
Duray, S. A. and Davies, F. T. Jr. 1989. Field evaluation of preemergence herbicides for weed control in container grown woody landscape plants. J. Environ. Hort. 7:140142.Google Scholar
Fare, D. C. and Robinson, D. 2001. Herbicide efficacy affected by cyclic irrigation. Proc. South. Nursery Assoc. Res. Conf. 46:117120.Google Scholar
Fleming, G. F., Wax, L. M., Simmons, W., and Felsot, A. S. 1992. Movement of alachlor and metribuzin from controlled release formulations in a sandy soil. Weed Sci. 40:606613.Google Scholar
Fretz, T. A. 1973. Herbicide-impregnated mulches for weed control in container nursery stock. Sci. Hort. 19:165170.Google Scholar
Fretz, T. A. and Dunham, C. W. 1971. The incorporation of herbicides into organic mulches for weed control in ornamental plantings. J. Amer. Soc. Hort. Sci. 96:280284.Google Scholar
Gilliam, C. H., Fare, D. C., and Beasley, A. 1992. Non-target herbicide losses from application of granular Ronstar to container nurseries. J. Environ. Hort. 10:175176.Google Scholar
Gilliam, C. H., Foster, W. J., Adrain, J. L., and Shumack, R. L. 1990. A survey of weed control costs and strategies in container production nurseries. J. Environ. Hort. 8:133135.Google Scholar
Horowitz, M. and Elmore, C. L. 1991. Leaching of oxyfluorfen in container media. Weed Technol. 5:175180.Google Scholar
Judge, C. A. and Neal, J. C. 2000. Susceptibility of common nursery weeds to preemergence herbicides. Proc. South. Nursery Assoc. Res. Conf. 45:370372.Google Scholar
Judge, C. A., Neal, J. C., and Leidy, R. B. 2002. Trifluralin dissipation in a bark-based substrate. Proc. South. Nursery Assoc. Res. Conf. 47:389392.Google Scholar
Kalmowitz, K. and Whitwell, T. 1988. Comparison of Ronstar formulations for efficacy and phytotoxicity in container grown landscape plants. J. Environ. Hort. 6:7780.Google Scholar
Keese, R. J., Camper, N. D., Whitwell, T., Riley, M. B., and Wilson, P. C. 1994. Herbicide runoff from ornamental container nurseries. J. Environ. Qual. 23:320324.Google Scholar
Krueger, R. R. and Shaner, D. L. 1982. Germination and establishment of prostrate spurge (Euphorbia supina). Weed Sci. 30:286290.Google Scholar
Mathers, H. 1999. Examination of carriers in application of pre-emergence herbicides in container-grown nursery stock. ODA Final Research Reports. Oregon Department of Agriculture. Salem, OR.Google Scholar
Mathers, H. M. 2002. Uncovering the truth about mulches. The Buckeye. September 14–15. 1718.Google Scholar
Mathers, H. 2003. Novel methods of weed control in containers. HortTechnol. 13:2831.Google Scholar
Mathers, H. M. 2004. Herbicide treated mulches: more bite to bark. Outlooks on Pest Manag. 15:127130.CrossRefGoogle Scholar
Mathers, H. M. 2007. Recognize herbicide injury. Nursery Manag. Prod. 23:5052, 54, 56, 60.Google Scholar
Mathers, H. and Case, L. T. 2008. Efficacy and phytotoxicity of various herbicide treated mulches in the field. Pages 3840. In Mathers, H. M., Case, L., Daniel, K., Somireddy, U., and Rivera, D. eds. 2008 Yearly Ohio State University Research Summary Report Ornamental Program. Columbus, OH: The Ohio State University.Google Scholar
Mathers, H. M., Lowe, S. B., Scagel, C., Struve, D. K., and Case, L. T. 2007. Abiotic factors influencing root growth of woody nursery plants in containers. HortTechnol. 17:151162.CrossRefGoogle Scholar
Mickler, K. D. and Ruter, J. M. 2001. Evaluation of a year long weed control program for container grown ornamentals. Proc. South. Nursery Assoc. Res. Conf. 46:454456.Google Scholar
Mulch and Soil Council 2009. Certified mulch and soil products. http://www.mulchandsoilcouncil.org/ProductCert/Consumer/CertifiedM.html. Accessed: May 1, 2009.Google Scholar
Oliveira, S. C., Pereira, F. M., Ferraz, A., Silva, F. T., and Goncalves, A. R. 2000. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices. Appl. Biochem. Biotechnol. 84–86:595615.Google Scholar
Penny, G. M. and Neal, J. C. 2000. Weed scouting in container nurseries. Proc. South. Nursery Assoc. Res. Conf. 45:387389.Google Scholar
Rabson, M. 2009. MP seeks ban on cosmetic pesticides. Winnipeg Free Press. April 22, 2009. http://www.winnipegfreepress.com/local/null-43411082.html. Accessed: May 4, 2009.Google Scholar
Ruizzo, M. A., Smith, E. M., and Gorske, S. F. 1983. Evaluations of herbicides in slow-release formulations for container-grown landscape crops. J. Am. Soc. Hort. Sci. 108:551553.Google Scholar
Samtani, J. B., Kling, G. J., Mathers, H. M., and Case, L. 2007. Rice hulls, leaf waste pellets, and pine bark as herbicide carriers for container-grown woody ornamentals. HortTechnol. 17:289295.Google Scholar
Simmons, L. D. and Derr, J. F. 2007. Pendimethalin movement through pine bark compared to field soil. Weed Technol. 21:873876.Google Scholar
Singh, M., Glaze, N. C., and Phatak, S. C. 1980. Chemical weed control in container grown ornamentals. Proc. South. Weed Sci. Soc. 33:87.Google Scholar
Skroch, W. A., Powell, M. A., Bilderback, T. E., and Henry, P. H. 1992. Mulches: durability, aesthetic value, weed control, and temperature. J. Environ. Hort. 10:4345.Google Scholar
Smith, A. E. and Verma, B. P. 1977. Weed control in nursery stock by controlled release of alachlor. Weed Sci. 25:175178.Google Scholar
Somireddy, U. and Mathers, H. M. 2008. Field evaluation of various herbicide and mulch combinations for ornamental weed control. Pages 2125. In Mathers, H. M., Case, L., Daniel, K., Somireddy, U., and Rivera, D. eds. 2008 Yearly Ohio State University Research Summary Report Ornamental Program. Columbus, OH: The Ohio State University.Google Scholar
Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics. 2nd ed. New York: McGraw-Hill. 633 p.Google Scholar
Trimnell, D. and Shasha, B. S. 1990. Controlled release formulations of atrazine in starch for potential reduction of groundwater pollution. J. Control. Release 12:251256.Google Scholar
Walker, R. H., Norris, B. E. Jr., and McGuire, J. A. 1991. Grass weed management systems in grain sorghum (Sorghum bicolor). Weed Technol. 5:5460.Google Scholar
Wauchope, D. R., Glaze, N. C., and Dowler, C. C. 1990. Mobility and efficacy of controlled-release formulations of atrazine. Weed Sci. Soc. Am. Abstr. 30:216.Google Scholar
Wehtje, G. R., Gilliam, C. H., and Hajek, B. F. 1993. Adsorption, desorption, and leaching of oxadiazon in container media and soil. HortSci. 28:126128.Google Scholar
Wilcut, J. W., Gilliam, C. H., Wehtje, G. R., and Fare, D. C. 1989. Grass control in container-grown ornamentals with pre- and postemergence herbicide combinations. HortSci. 24:456459.Google Scholar
Wooten, R. E. and Neal, J. 2000. Evaluations of Penn Mulch, Wulpack and Geodisc for weed control in containers. Proc. Northeast Weed Sci. Soc. 54:96.Google Scholar
Xiangqian, L., Gasic, K., Cammue, B., Broekaert, W., and Korban, S. S. 2003. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta 218:226232.Google Scholar