Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:06:13.816Z Has data issue: false hasContentIssue false

Mesotrione Activity on Crabgrass (Digitaria spp.) as Influenced by Nitrogen Fertilization Rate, Source, and Timing

Published online by Cambridge University Press:  20 January 2017

Leslie L. Beck*
Affiliation:
Extension Plant Sciences Department, New Mexico State University, Las Cruces, NM 88003
Aaron J. Patton
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907
Quincy D. Law
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907
Daniel V. Weisenberger
Affiliation:
Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Drive, West Lafayette, IN 47907
James T. Brosnan
Affiliation:
Department of Plant Sciences, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996
José J. Vargas Almodóvar
Affiliation:
Department of Plant Sciences, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996
Gregory K. Breeden
Affiliation:
Department of Plant Sciences, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996
Dean A. Kopsell
Affiliation:
Department of Plant Sciences, The University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996
*
Corresponding author's E-mail: [email protected].

Abstract

Mesotrione, a 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide, is labeled for PRE and POST crabgrass control. It has enhanced efficacy on smooth and large crabgrass when applied in conjunction with soil-applied nitrogen (N). The objectives of this study, using crabgrass as the weed species, were to (1) determine the influence of N rate and tissue N concentration on mesotrione activity, (2) determine the influence of N source on mesotrione activity, and (3) determine the influence of N application timing on mesotrione activity. Large crabgrass plants that received 12 kg N ha−1 or more before mesotrione application had more bleached and necrotic leaves compared with plants that received 0 kg N ha−1 7 d after treatment (DAT) in the greenhouse. Although N application rates as high as 98 kg N ha−1 were tested, 90% leaf bleaching and necrosis were observed with rates of 8.9 or 10.1 kg N ha−1 in Tennessee and Indiana, respectively. Nitrogen concentration in large crabgrass leaf and stem tissue on the day of the mesotrione application was closely related to the bleaching and necrosis symptoms observed 7 DAT. Although N rate influenced mesotrione activity, N source did not. Nitrogen application timing was also important, with N applications 3, 1, and 0 d before a mesotrione application having the highest percentage of bleached and necrotic leaves in greenhouse experiments. Both greenhouse and field trials support the finding that N applications in proximity to the mesotrione application enhance herbicide activity. Thus, practitioners can pair N and POST mesotrione applications together or in proximity to enhance crabgrass control.

Mesotrione es un herbicida inhibidor de 4-hydroxyphenylpyruvate dioxygenase que está registrado para el control PRE y POST de especies del género Digitaria. Tiene una actividad mayor en Digitaria ischaemum y Digitiaria sanguinalis cuando se aplica en forma conjunta con nitrógeno aplicado al suelo (N). Los objetivos de este estudio, enfocándose en Digitaria, fueron: (1) determinar la influencia de la dosis de N y la concentración de N en el tejido sobre la actividad de mesotrione, (2) determinar la influencia de la fuente de N sobre la actividad de mesotrione, y (3) determinar la influencia del momento de aplicación de N sobre la actividad de mesotrione. Plantas de D. sanguinalis que recibieron 12 kg N ha−1 o más antes de la aplicación de mesotrione, tuvieron más hojas blanqueadas y necróticas que las plantas que recibieron 0 kg N ha−1 a 7 d después del tratamiento (DAT), en el invernadero. Aunque se evaluaron dosis de aplicación de N de hasta 89 kg N ha−1, con dosis de sólo 8.9 ó 10.1 kg N ha−1 se observó 90% blanqueamiento y necrosis foliar, en Tennessee e Indiana, respectivamente. La concentración de N en el tejido foliar y del tallo de D. sanguinalis, el día de la aplicación de mesotrione, estuvo altamente relacionada a los síntomas de blanqueamiento y necrosis observados a 7 DAT. Aunque la dosis de N influenció la actividad de mesotrione, la fuente de N no lo hizo. El momento de aplicación de N también fue importante. Así, las aplicaciones de N a 3, 1, y 0 d antes de la aplicación de mesotrione tuvieron el mayor porcentaje de hojas blanqueadas y necróticas en experimentos de invernadero. Tanto los estudios de invernadero como los de campo apoyan los resultados de que aplicaciones de N cercanas a la aplicación de mesotrione mejoran la actividad del herbicida. De esta forma, los usuarios pueden combinar aplicaciones de N y mesotrione POST o realizarlas en momentos cercanos para mejorar el control de malezas del género Digitaria.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abdallah, I, Fischer, AJ, Elmore, CL, Saltveit, ME, Zaki, M (2006) Mechanism of resistance to quinclorac in smooth crabgrass (Digitaria ischaemum). Pesticide Biochem Phys 84:3848 Google Scholar
Abit, MJM, Al-Khatib, K (2009) Absorption, translocation, and metabolism of mesotrione in grain sorghum. Weed Sci 57:563566 Google Scholar
Anonymous (2008) Tenacity® herbicide label. Greensboro, NC: Syngenta Crop Protection, Inc. Pp 114 Google Scholar
Bigelow, CA, Camberato, JJ, Patton, AJ (2013) Fertilizing established cool-season lawns: maximizing turf health with environmentally responsible programs. West Lafayette, IN: Purdue Univ Coop Ext Serv Bull. AY-22-WGoogle Scholar
Bollman, JD, Boerboom, CM, Becker, RL, Fritz, VA (2008) Efficacy and tolerance to HPPD-inhibiting herbicides in sweet corn. Weed Technol 22:666674 Google Scholar
Bowman, DC, Paul, JL (1991) Absorption of three slow-release nitrogen fertilizers by perennial ryegrass turf. Fert Res 29:309316 Google Scholar
Breeden, G, Brosnan, JT (2010) Crabgrass species control in turfgrass. Knoxville, TN: UT Ext. W146Google Scholar
Brosnan, JT, Thoms, AW, McCullough, PE, Armel, GR, Breeden, GK, Sorochan, JC, Mueller, TC (2010) Efficacy of flazasulfuron for control of annual bluegrass (Poa annua) and perennial ryegrass (Lolium perenne) as influenced by nitrogen. Weed Sci 58:449456 Google Scholar
Calhoun, RN, Rinehard, GJ, Hathaway, AD, Buhler, DD (2005) Maximizing cultural practices to minimize weed pressure and extend herbicide treatment interval in a cool-season turfgrass mixture. Int Turfgrass Soc Res J 10:11841371 Google Scholar
Cathcart, RJ, Chandler, K, Swanton, CJ (2004) Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Sci 52:291296 Google Scholar
Chism, WJ, Bingham, SW (1991) Postemergence control of large crabgrass (Digitaria sanguinalis) with herbicides. Weed Sci 39:6266 Google Scholar
Christians, NE (2011) Fundamentals of Turfgrass Management. 4th edn. Hoboken, NJ: John Wiley & Sons. Pp 208210 Google Scholar
Dernoeden, PH, Carroll, MJ, Krouse, JM (1993) Weed management and tall fescue quality as influenced by mowing, nitrogen, and herbicides. Crop Sci 33:10551061 Google Scholar
Derr, JF (2002) Detection of fenoxaprop-resistant smooth crabgrass (Digitaria ischaemum) in turf. Weed Technol 16:396400 Google Scholar
Elmore, MT, Brosnan, JT, Kopsell, DA, Breeden, GK (2012) Nitrogen-enhanced efficacy of mesotrione and topramezone for smooth crabgrass (Digitaria ischaemum) control. Weed Sci 60:480485 Google Scholar
Elmore, MT, Brosnan, JT, Kopsell, DA, Breeden, GK (2013) Effects of temperature and nitrogen fertilization on mesotrione activity against annual bluegrass (Poa annua L.). Int Turfgrass Soc Res J 12:657662 Google Scholar
Giese, MS, Keese, RJ, Christians, NE, Gaussoin, RE (2005) Mesotrione: a potential selective post-emergence herbicide for turfgrass. Int Turfgrass Soc Res J 10(ANNEXE):100101 Google Scholar
Goddard, MJR, Willis, JB, Askew, SD (2010) Application placement and relative humidity affects smooth crabgrass and tall fescue response to mesotrione. Weed Sci 58:6772 Google Scholar
Hall, DW, McCarty, LB, Murphy, TR (1994) Weed Taxonomy. Pages 136 in Turgeon, AJ, ed. Turf Weeds and Their Control. Madison, WI: American Society of Agronomy and Crop Science Society of America Google Scholar
Hess, DF (2000) Light-dependent herbicides: an overview. Weed Sci 48:160170 Google Scholar
Johnson, BJ (1975) Postemergence control of large crabgrass and goosegrass in turf. Weed Sci 23:404409 Google Scholar
Johnson, BJ, Bowyer, TH (1982) Management of herbicide and fertility levels on weeds and Kentucky bluegrass turf. Agron J 74:845850 Google Scholar
Kim, TJ, Neal, JC (2001) Inter- and intraspecific variation in smooth (D. ischaemum) and large crabgrass (D. sanguinalis). Kor Turfgrass Sci 15:127136 Google Scholar
Kim, TJ, Neal, JC, DiTomaso, Rossi FS (2002) A survey of weed scientists' perceptions on the significance of crabgrasses (Digitaria spp.) in the United States. Weed Technol 16:239242 Google Scholar
Matteson, AR, Gannon, TW, Jeffries, MD, Haines, S, Lewis, DF, Polizzotto, ML (2014) Arsenic retention in foliage and soil after monosodium methyl arsenate (MSMA) application to turfgrass. J Environ Qual 43:379388 Google Scholar
McCarty, LB, Murphy, TR (1994) Control of turfgrass weeds. Page 224 in Turgeon, AJ, ed. Turf Weeds and Their Control. Madison, WI: American Society of Agronomy and Crop Science Society of America Google Scholar
McCurdy, JD, McElroy, JS, Breeden, GK (2009a) Yellow nutsedge (Cyperus esculentus) and large crabgrass (Digitaria sanguinalis) response to soil- and foliar-applied mesotrione. Weed Technol 23:6266 Google Scholar
McCurdy, JD, McElroy, JS, Breeden, GK, Kopsell, DA (2008) Mesotrione plus prodiamine for smooth crabgrass (Digitaria ischaemum) control in established bermudagrass turf. Weed Technol 22:275279 Google Scholar
McCurdy, JD, McElroy, JS, Kopsell, DA, Sams, CE (2009b) Mesotrione control and pigment concentration of large crabgrass (Digitaria sanguinalis) under varying environmental conditions. Pest Manag Sci 65:640644 Google Scholar
McIntosh, MS (1983) Analysis of combined experiments. Agron J 75:153155 Google Scholar
Mitchell, G, Bartlett, DW, Fraser, TEM, Hawkes, TR, Holt, DC, Townson, JK, Wichert, RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120128 Google Scholar
Mithila, J, Swanton, CJ, Blackshaw, RE, Cathcart, RJ, Hall, JC (2008) Physiological basis for reduced glyphosate efficacy on weeds grown under low soil nitrogen. Weed Sci 56:1217 Google Scholar
Murray, JJ, Klingman, DL, Nash, RG, Woolson, EA (1983) Eight years of herbicide and nitrogen fertilizer treatments on Kentucky bluegrass (Poa pratensis) turf. Weed Sci 31:825831 Google Scholar
Reicher, ZJ, Weisenberger, DV, Throssell, CS (1999) Turf safety and effectiveness of dithiopyr and quinclorac for large crabgrass (Digitaria sanguinalis) control in spring-seeded turf. Weed Technol 13:253256 Google Scholar
[USEPA] U.S. Environmental Protection Agency (2009) Amendment to organic arsenicals RED. Washington, DC: EPA-HQ-OPP-2009-0191-002. USEPA Google Scholar
Walker, KS, Bigelow, CA, Smith, DR, Van Scoyoc, GE, Reicher, ZJ (2007) Aboveground responses of cool-season lawn species to nitrogen rates and application timings. Crop Sci 47:12251236 Google Scholar
Xie, L, Deying, L, Fang, W, Howatt, K (2011) Urea ammonium nitrate additive and raking improved mesotrione efficacy on creeping bentgrass. HortTechnology 21:4145 Google Scholar