Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T18:00:45.797Z Has data issue: false hasContentIssue false

Mechanical Scarification of Dodder Seeds with a Handheld Rotary Tool

Published online by Cambridge University Press:  20 January 2017

Katherine M. Ghantous*
Affiliation:
University of Massachusetts Cranberry Station, P.O. Box 569, East Wareham, MA 02538
Hilary A. Sandler
Affiliation:
University of Massachusetts Cranberry Station, P.O. Box 569, East Wareham, MA 02538
*
Corresponding author's E-mail: [email protected].

Abstract

Dodder seeds are physically dormant because of hard seed coats and do not readily germinate without scarification. Reliable methods of scarification for small lots of dodder seed are needed to facilitate laboratory, greenhouse, and field research projects. Dodder seed was scarified for varying times using a handheld rotary tool at the 10,000 rpm setting with a conical grinding-stone bit attached. Percentage of germination and weight change of seeds were assessed using scarification times between 0 and 4 min at 0.5-min increments. Mean seed weight loss and mean number of germinated seeds increased quadratically as scarification time increased. Scarifying for 2.5 min was judged the shortest time with maximal germination. Another study evaluated the effect of seed number (100 to 400 seeds sample−1) on the efficacy of rotary tool scarification when scarification time was held constant at 2.5 min. Percentage of germination decreased linearly as seed batch size increased. The handheld rotary tool provides consistent and repeatable scarification of dodder seed with germination rates greater than 80%.

Las semillas de Cuscuta spp. tienen latencia física debido a que sus testas son duras y no germinan fácilmente sin escarificación. Se necesitan métodos confiables de escarificación para lotes pequeños de semillas de Cuscuta para facilitar los proyectos de investigación de laboratorio, invernadero y campo. La semilla de Cuscuta fue escarificada por períodos diferentes usando una herramienta de rotación manual a 10,000 RPM a la cual se le colocó una piedra cónica de esmeril. El porcentaje de germinación y el cambio en el peso de las semillas fueron evaluados usando tiempos de escarificación entre 0 y 4 min, con incrementos de 0.5 min. La pérdida promedio en el peso de la semilla y el número promedio de semillas germinadas se incrementó cuadráticamente conforme aumentó el tiempo de escarificación. La escarificación por 2.5 min fue considerada como el tiempo más corto con máxima germinación. Otro estudio evaluó el efecto del número de semillas (de 100 a 400 semillas por muestra) en la eficacia de la herramienta rotativa cuando el tiempo de escarificación se mantuvo constante a 2.5 min. El porcentaje de germinación disminuyó linealmente conforme se incrementó la cantidad de semillas en la muestra. La herramienta rotativa manual proporciona escarificación consistente y repetible de las semillas de Cuscuta con índices de germinación superiores al 80%.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Azad, M. S., Zedan-Al-Musa, M., and Matin, M. A. 2010. Effects of pre-sowing treatments on seed germination of Melia azedarach . J. Forestry Res. 21:193196.Google Scholar
Benvenuti, S., Dinelli, G., Bonetti, A., and Catizone, P. 2005. Germination ecology, emergence and host detection in Cuscuta campestris . Weed Res. 45:270278.Google Scholar
Borza, J. K., Westerman, P. R., and Leibman, M. 2007. Comparing estimates of seed viability in three foxtail (Setaria) species using the imbibed seed crush test with and without additional tetrazolium testing. Weed Technol. 21:518522.Google Scholar
Buhler, D. D. and Hoffman, M. L. 1999. Andersen's Guide to Practical Methods of Propagating Weeds and Other Plants. Lawrence, KS Allen Press, Weed Science Society of America. 248 p.Google Scholar
Damon, R. A. and Harvey, W. R. 1987. Experimental Design, ANOVA, and Regression. New York Harper & Row. 508 p.Google Scholar
Dawson, J. H., Musselman, L. J., Wolswinkel, P., and Dorr, I. 1994. Biology and control of Cuscuta . Rev. Weed Sci. 6:265317.Google Scholar
Gaertner, E. E. 1950. Studies of seed germination, seed identification, and host relationships in dodders, Cuscuta spp. Mem. Cornell Exp. Stn. 294:156.Google Scholar
Hutchison, J. M. and Ashton, F. M. 1979. Effect of desiccation and scarification on the permeability and structure of the seed coat of Cuscuta campestris . Am. J. Bot. 66:4046.Google Scholar
Jayasuriya, K. M., Baskin, J. M., Geneve, R. L., and Baskin, C. 2009. Phylogeny of seed dormancy in Convolvulaceae, subfamily Convolvuloideae (Solanales). Ann. Bot. 103:4563.Google Scholar
Kim, A. K., Ellis, D. J., Sandler, H. A., Hart, P., Darga, J. E., Keeney, D., and Bewick, T. A. 2004. Genetic diversity of dodder (Cuscuta spp.) collected from commercial cranberry production as revealed in the trnL (UAA) intron. Plant Mol. Biol. Rep. 22:217223.Google Scholar
Lyshede, O. B. 1984. Seed structure and germination in Cuscuta pedicellata with some notes on Cuscuta campestris . Nord. J. Bot. 4:669674.Google Scholar
Lyshede, O. B. 1992. Studies on mature seeds of Cuscuta pedicellata and C. campestris by electron microscopy. Ann. Bot. 69:365371.Google Scholar
McKee, G. W., Pieffer, R. A., and Mohsenin, N. N. 1979. Seed coat structure in Coronilla varia L. and its relations to hard seed. Agron. J. 69:5358.Google Scholar
Meulebrouck, K., Verheyen, K., Hermy, M., and Baskin, C. 2010. Will the sleeping beauties wake up? Seasonal dormancy cycles in seeds of the holoparasite Cuscuta epithymum . Seed Sci. Res. 20:2330.Google Scholar
O'Connell, J., Sandler, H. A., Adler, L. S., and Caruso, F. L. 2011. Controlled studies further the development of practical guidelines to manage dodder (Cuscuta gronovii) in cranberry production with short-term flooding. Renew. Agric. Food Syst. 26:269275.Google Scholar
Oelke, E. A. and Albrecht, K. A. 1978. Mechanical scarification of dormant wild rice seed. Agron. J. 70:691694.Google Scholar
Olszewski, M. W., Young, C. A., and Sheffield, J. B. 2010. Germination and seedling growth of Desmanthus illinoensis and Desmodium canadense in response to mechanical scarification. Hortscience 45:15541558.Google Scholar
Padma, V., Reddy, B. M., and Satyanarayana, G. 1993. Breaking dormancy in certain Acacia spp. by pre-sowing seed treatments. Seed Res. 21:2630.Google Scholar
Smith, G. S. 1978. Seed scarification to speed germination of ornamental cycads (Zamia spp.). Hortscience 13:436438.Google Scholar
Stabell, E., Upadhyaya, M. K., and Ellis, B. E. 1998. Role of seed coat in regulation of seed dormancy in houndstongue (Cynoglossum officinale). Weed Sci. 46:344350.Google Scholar
Stefanovic, S., Kuzmina, M., and Costea, M. 2007. Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am. J. Bot. 94:568589.Google Scholar
Tingey, D. C. and Allred, K. R. 1961. Breaking dormancy in seeds of Cuscuta approximata . Weeds 9:429436.Google Scholar