Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-14T11:14:31.102Z Has data issue: false hasContentIssue false

MCPA Synergizes Imazamox Control of Feral Rye (Secale cereale)

Published online by Cambridge University Press:  20 January 2017

Andrew R. Kniss*
Affiliation:
Department of Plant Sciences, University of Wyoming, Laramie, WY 82071
Drew J. Lyon
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff, NE 69361
Joseph D. Vassios
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523
Scott J. Nissen
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523
*
Corresponding author's E-mail: [email protected]

Abstract

Field, greenhouse, and laboratory studies were conducted to determine the effect of MCPA ester, fertilizer type, and fertilizer rate on feral rye control with imazamox. In field studies near Sidney, NE, increasing the concentration of liquid ammonium phosphate (10–34–0) from 2.5 to 50% of the spray solution decreased feral rye control with imazamox by as much as 73%. Conversely, adding MCPA ester to imazamox significantly increased feral rye control in field studies by up to 77%. Initial greenhouse studies confirmed the liquid ammonium phosphate antagonism effect, but subsequent greenhouse studies were inconsistent with regard to the interaction between fertilizer and imazamox. At least one source of liquid ammonium phosphate was shown not to be antagonistic, and therefore fertilizer source or contaminants may be responsible for initial field observations. Greenhouse studies confirmed the synergistic interaction between MCPA and imazamox. MCPA ester applied at 560 g ai ha−1 decreased the rate of imazamox required to cause 50% reduction in feral rye dry weight (GR50) to 13 g ha−1 compared to 35 g ha−1 for imazamox alone. Although addition of MCPA ester increased 14C-imazamox absorption by 8% in laboratory studies, less 14C translocated out of the treated leaf; therefore the mechanism of synergism does not appear to be related to imazamox absorption or translocation.

Se realizaron estudios de campo, invernadero y de laboratorio para determinar el efecto de MCPA éster y tipo y dosis de fertilizante en el control de Secale cereale silvestre con imazamox. En los estudios de campo cerca de Sidney, Nebraska, el incremento de la concentración de fosfato de amonio líquido (10-34-0) de 2.5 a 50% de la solución asperjada, disminuyó el control de S. cereale con imazamox hasta 73%. Por otra parte, la adición de MCPA éster al imazamox incrementó significativamente el control del S. cereale silvestre hasta 77%, en los estudios de campo. Los primeros estudios de invernadero confirmaron un efecto antagónico del fosfato de amonio líquido, pero estudios subsecuentes fueron inconsistentes con respecto a la interacción entre el fertilizante e imazamox. Al menos una fuente de fosfato de amonio líquido no mostró ser antagónica y por lo tanto la fuente del fertilizante o algún contaminante podrían ser los responsables de las primeras observaciones en campo. Los estudios de invernadero confirmaron la interacción de sinergismo a entre MCPA e imazamox. MCPA éster aplicado a 560 g ia ha−1 disminuyó la GR50 de imazamox 63%, en comparación con imazamox solo. En estudios de laboratorio, aunque la adición de MCPA éster incrementó la absorción de 14C-imazamox en 8%, menos 14C se translocó fuera de la hoja tratada; por lo tanto, el mecanismo de sinergismo no parece estar relacionado a la absorción o translocación de imazamox.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, R. L. 1998. Ecological characteristics of three winter annual grasses. Weed Technol. 12:478483.Google Scholar
Anonymous, . 2010. Beyond herbicide product label. EPA Reg. No 241-379. Research Triangle Park, NC: BASF Corporation. 22 p.Google Scholar
Daugovish, O., Lyon, D., and Baltensperger, D. 1999. Cropping systems to control winter annual grasses in winter wheat (Triticum aestivum). Weed Technol. 13:120126.Google Scholar
Fast, B. J., Medlin, C. R., and Murray, D. S. 2009. Five cool-season annual grass weeds reduce hard red winter wheat grain yield and price. Weed Technol. 23:206213.Google Scholar
Frihauf, J., Miller, S., and Alford, C. 2005. Imazamox rates, timings, and adjuvants affect imidazolinone-tolerant winter wheat cultivars. Weed Technol. 19:599607.CrossRefGoogle Scholar
Geier, P. and Stahlman, P. 2009. Nitrogen concentration and application timing affect imazamox efficacy in winter wheat. Crop Prot. 28:573576.Google Scholar
Geier, P., Stahlman, P., White, A., Miller, S., Alford, C., and Lyon, D. 2004. Imazamox for winter annual grass control in imidazolinone-tolerant winter wheat. Weed Technol. 18:924930.Google Scholar
Kniss, A. R. and Lyon, D. J. 2011. Winter wheat response to pre-plant applications of aminocyclopyrachlor. Weed Technol. 25:5157.Google Scholar
Peeper, T., Roberts, J., Solie, D., and Stone, A. 2008. Variation in characteristics and imazamox tolerance of feral rye. Agron. J. 100:198204.Google Scholar
Pester, T., Nissen, S., and Westra, P. 2001. Absorption, translocation, and metabolism of imazamox in jointed goatgrass and feral rye. Weed Sci. 49:607612.Google Scholar
Pester, T., Westra, P., Anderson, R., Lyon, D., Miller, S., Stahlman, P., Northam, F., and Wicks, G. 2000. Secale cereale interference and economic thresholds in winter Triticum aestivum . Weed Sci. 48:720727.CrossRefGoogle Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.Google Scholar
Rinella, M. J., Haferkamp, M. R., Masters, R. A., Muscha, J. M., Bellows, S. E., and Vermeire, L. T. 2010. Growth regulator herbicides prevent invasive annual grass seed production. Invasive Plant Sci. Manag. 3:1216.Google Scholar
Ritz, C. and Streibig, J. C. 2005. Bioassay analysis using R. J. Stat. Soft. 12(5) http://www.jstatsoft.org/v12/i05/paper. Accessed February 27, 2011.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Feurst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Shaner, D. L. 2003. Imidazolinone herbicides. Pages 769784 in Plimmer, J., Gammon, D., and Ragsdale, N., eds. Encyclopedia of Agrochemicals. Hoboken, NJ J. Wiley.Google Scholar
Stump, W. and Westra, P. 2000. The seedbank dynamics of feral rye (Secale cereale). Weed Technol. 14:714.Google Scholar
Tecle, B., DaCunha, A., and Shaner, D. L. 1993. Differential routes of metabolism of imidazolinones: basis for soybean (Glycine max) selectivity. Pestic. Biochem. Physiol. 46:120130.Google Scholar
White, A. D., Lyon, D. J., Mallory-Smith, C., Medlin, C. R., and Yenish, J. P. 2006. Feral rye (Secale cereale) in agricultural production systems. Weed Technol. 20:815823.Google Scholar