Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T05:30:03.719Z Has data issue: false hasContentIssue false

Likelihood of Soybean Cyst Nematode (Heterodera glycines) Reproduction on Henbit (Lamium amplexicaule) Roots in Nebraska

Published online by Cambridge University Press:  20 January 2017

Rodrigo Werle
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583
Loren J. Giesler
Affiliation:
Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583
Mark L. Bernards
Affiliation:
School of Agriculture, Western Illinois University, Macomb, IL 61455
John L. Lindquist*
Affiliation:
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583
*
Corresponding author's E-mail: [email protected].

Abstract

Soybean cyst nematode (SCN) is a major soybean yield–limiting disease in the United States. Henbit, a winter annual species common to no-till fields in the midwestern United States, is known to act as an alternative host for SCN. A simulation was performed to estimate how likely SCN was to reproduce on henbit roots during a 30-yr period in two important soybean production areas of Nebraska. Simulations were conducted using published information on henbit seedling emergence, SCN reproduction on henbit roots, and SCN response to soil temperature. Results indicate that SCN would be able to complete one generation on henbit roots under Nebraska conditions. The SCN reproductive cycle was not likely to be completed before the winter in south central Nebraska, but one SCN generation was predicted to be completed in the fall in 2 out of 30 simulation years (7% likelihood) in southeast Nebraska. Based on our predictions, to reduce the chances of SCN population build-up in the absence of its main host (soybean), weed management in fields infested with both henbit and SCN should be completed after crop harvest in the fall when most henbit seedlings have emerged and are growing but the SCN developing on henbit roots have not yet achieved full maturity in Nebraska.

El nematodo cístico de la soja (SCN) es la enfermedad que más limita el rendimiento de la soja en los Estados Unidos. Lamium amplexicaule es una especie anual de invierno común en campos con labranza cero, y que se conoce que actúa como hospedero alternativo de SCN. Se realizó una simulación para estimar qué tan probable fue la reproducción de SCN en raíces de L. amplexicaule durante un período de 30 años en dos áreas importantes de soja en Nebraska. Las simulaciones se realizaron usando información publicada acerca de la emergencia de plántulas de L. amplexicaule, reproducción de SCN en raíces de L. amplexicaule, y la respuesta de SCN a la temperatura del suelo. Los resultados indican que SCN podría ser capaz de completar una generación en raíces de L. amplexicaule en las condiciones de Nebraska. No fue probable que el ciclo reproductivo de SCN se completara antes del invierno en el sur-central de Nebraska, pero se predijo que se completaría una generación de SCN en el otoño en 2 de los 30 años de simulación (7% de probabilidad) en el sureste de Nebraska. Con base en nuestras predicciones, para reducir las oportunidades de aumentos en las poblaciones de SCN en ausencia de su hospedero principal (soja) en Nebraska, el manejo de malezas en campos infestados con L. amplexicaule y SCN debe ser completado después de la cosecha del cultivo en el otoño, cuando las plántulas de L. amplexicaule han emergido y están creciendo, pero el SCN que está desarrollándose en raíces de L. amplexicaule no ha alcanzado la madurez.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alston, DG, Schmitt, DP (1988) Development of Heterodera glycines life stages as influenced by temperature. J Nematol 20:366372 Google Scholar
Asmus, GL, Ferraz, LCCB (2002) Effect of population densities of Heterodera glycines race 3 on leaf area, photosynthesis and yield of soybean. Fitopatol Bras 27:273278 Google Scholar
Bernards, ML, Sandell, LD (2011) Control Winter Annual Weed Early to Protect Crop Yield. CropWatch, March 18, 2011. Lincoln, NE: EdMedia, IANR. https://cropwatch.unl.edu/archive/-/asset_publisher/VHeSpfv0Agju/content/4491902. Accessed April 25, 2014Google Scholar
Creech, JE, Faghihi, J, Ferris, VR, Westphal, A, Johnson, WG (2007a) Influence of intraspecific henbit (Lamium amplexicaule) and purple deadnettle (Lamium purpureum) competition on soybean cyst nematode reproduction. Weed Sci 55:665670 CrossRefGoogle Scholar
Creech, JE, Johnson, WG, Faghihi, J, Ferris, VR, Westphal, A (2005) First report of soybean cyst nematode reproduction on purple deadnettle under field conditions. Crop Manage. DOI: Google Scholar
Creech, JE, Santini, JB, Conley, SP, Westphal, A, Johnson, WG (2007b) Purple deadnettle (Lamium purpureum) and soybean cyst nematode response to cold temperature regimes. Weed Sci 55:592598 CrossRefGoogle Scholar
Creech, JE, Webb, JS, Young, BG, Bond, JP, Harrison, SK, Ferris, VR, Faghihi, J, Westphal, A, Johnson, WG (2007c) Development of soybean cyst nematode on henbit (Lamium amplexicaule) and purple deadnettle (Lamium purpureum). Weed Technol 21:10641070 Google Scholar
Creech, JE, Westphal, A, Ferris, VR, Faghihi, J, Vyn, TJ, Santini, JB, Johnson, WG (2008) Influence of winter annual weed management and crop rotation on soybean cyst nematode (Heterodera glycines) and winter annual weeds. Weed Sci 56:103111 CrossRefGoogle Scholar
Giesler, JL, Wilson, JA (2011) Soybean Cyst Nematode: Identification and Management. Lincoln, NE: University of Nebraska–Lincoln Extension NebGuide G1383. http://www.ianrpubs.unl.edu/epublic/pages/publicationD.jsp?publicationId=1180. Accessed June 14, 2013Google Scholar
Harrison, SK, Venkatesh, R, Riedel, RM (2008) Purple deadnettle (Lamium purpureum) emergence and removal time effects on soybean cyst nematode (Heterodera glycines). Weed Sci 56:327335 CrossRefGoogle Scholar
Hasty, RF, Sprague, CL, Hager, AG (2004) Weed control with fall and early-preplant herbicide applications in no-till soybean. Weed Technol 18:887892 Google Scholar
Hershman, DE (1997) Soybean Cyst Nematode: Soybean Thief and Public Enemy Number One. Cooperative Extension Service. University of Kentucky. PPA-45. http://www.ca.uky.edu/agc/pubs/ppa/ppa42/ppa42.pdf. Accessed January 24, 2012Google Scholar
Johnson, WG, Creech, JE, Mock, V (2008) Role of winter annual weeds as alternative hosts for soybean cyst nematode. Crop Manag 7(1) DOI: CrossRefGoogle Scholar
Krausz, RF, Young, BG, Matthews, JL (2003) Winter annual weed control with fall-applied corn (Zea mays) herbicides. Weed Technol 17:516520 Google Scholar
Lee, AT, Witt, WW (2001) Persistence and efficacy of fall-applied simazine and atrazine. Proc North Cent Weed Sci Soc 56:50 Google Scholar
Mock, VA, Creech, JE, Ferris, VR, Faghihi, J, Westphal, A, Santini, JB, Johnson, WG (2012) Influence of winter annual weed management and crop rotation on soybean cyst nematode (Heterodera glycines) and winter annual weeds: years four and five. Weed Sci 60:634640 Google Scholar
Nelson, KA, Johnson, WG, Wait, JD, Smoot, RL (2006) Winter-annual weed management in corn (Zea mays) and soybean (Glycine max) and the impact of soybean cyst nematode (Heterodera glycines) egg population densities. Weed Technol 20:965970 Google Scholar
Niblack, TL (2005) Soybean cyst nematode management reconsidered. Plant Dis 89:10201026 Google Scholar
Noel, GR (1992) History, distribution, and economics. Pages 13 in Riggs, RD, Wrather, JA, eds. Biology and Management of the Soybean Cyst Nematode. St. Paul, MN: American Phytopathological Society Google Scholar
Owen, MDK, Zelaya, IA (2005) Herbicide-resistant crops and weed resistance to herbicides. Pest Manag Sci 61:301311 Google Scholar
Shaner, DL (2000) The impact of glyphosate-tolerant crops on the use of other herbicides and on resistance management. Pest Manag Sci 56:320326 Google Scholar
Spokas, K, Forcella, F (2009) Software tools for weed seed germination modeling. Weed Sci 57:216227 Google Scholar
Swagata, BB, Martin, SW, Roberts, RK, Larson, JA, Hogan, RJ Jr., Johnson, JL, Paxton, KW, Reeves, JM (2009). Adoption of conservation-tillage practices and herbicide resistant seed in cotton production. AgBioForum 12:258268 Google Scholar
[USDA] U.S. Department of Agriculture (2010) Field Crops Usual Planting and Harvesting Dates. Washington, DC: National Agricultural Statistics Service Agricultural Handbook 628. 51 pGoogle Scholar
Venkatesh, R, Harrison, SK, Riedel, RM (2000) Weed hosts of soybean cyst nematode (Heterodera glycines) in Ohio. Weed Technol 14:156160 Google Scholar
Werle, R, Bernards, ML, Arkebauer, TJ, Lindquist, JL (2014) Environmental triggers of winter annual weed emergence in the midwestern United States. Weed Sci 62:8396 Google Scholar
Werle, R, Bernards, ML, Giesler, LJ, Lindquist, JL (2013) Influence of two herbicides on soybean cyst nematode (Heterodera glycines) reproduction on henbit (Lamium amplexicaule) roots. Weed Technol 27:4146 Google Scholar
Wrather, JA, Anand, SC, Dropkin, VH (1984) Soybean cyst nematode control. Plant Dis. 68:829833 Google Scholar
Wrather, JA, Koenning, SR (2006) Estimates of disease effects on soybean yields in the United States 2003 to 2005. J Nematol 38:173180 Google Scholar