Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:15:23.862Z Has data issue: false hasContentIssue false

Leaching of Indaziflam Compared with Residual Herbicides Commonly Used in Florida Citrus

Published online by Cambridge University Press:  20 January 2017

Amit J. Jhala*
Affiliation:
Weed Research Program, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
Megh Singh
Affiliation:
Weed Research Program, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
*
Corresponding author's E-mail: [email protected]

Abstract

Soil-applied herbicides are commonly used for broad-spectrum residual weed control in Florida citrus. Groundwater contamination from some soil-applied herbicides has been reported in citrus growing areas in Florida. Indaziflam is a new soil-applied herbicide recently registered for broad-spectrum weed control in Florida citrus. There is no information available on leaching behavior of indaziflam in sandy soil. Experiments were conducted to compare leaching of indaziflam with five commercially used residual herbicides in a Florida Candler soil under simulated rainfall of 5 or 15 cm ha−1. Herbicide movement down soil columns was measured by visually evaluating injury and harvesting aboveground biomass of the bioassay species annual ryegrass. Ryegrass was not injured and plant biomass was not affected beyond 30 cm when indaziflam at a recommended rate of 73 g ai ha−1 was leached through the soil column. Leaching of indaziflam increased with increasing amounts of rainfall. For example, indaziflam leached up to 12.2 ± 0.8 cm (values are expressed ± SD) and 27.2 ± 2.6 cm at 5 and 15 cm ha−1 rainfall, respectively. The herbicide ranking from high to low mobility at 15 cm ha−1 of rainfall was bromacil = norflurazon > indaziflam > simazine = pendimethalin > diuron. Overall results suggested that indaziflam leaching was limited in Florida Candler soil in this study; however, field experiments are required to confirm the leaching of indaziflam under natural rainfall situation.

Herbicidas aplicados al suelo son comúnmente usados para el control residual de amplio espectro de malezas en cítricos en Florida. En zonas productoras de cítricos en dicho estado se ha reportado la contaminación de aguas subterráneas con algunos herbicidas aplicados al suelo. Indaziflam es un nuevo herbicida aplicado al suelo recientemente registrado para control de amplio espectro de malezas en cítricos en Florida. No hay información disponible acerca del comportamiento de lixiviación de indaziflam en suelos arenosos. Se realizaron experimentos para comparar la lixiviación de indaziflam con cinco herbicidas residuales usados comercialmente en un suelo Florida Candler bajo lluvia simulada de 5 ó 15 cm ha−1. Se midió el movimiento de herbicidas en columnas de suelo con un bioensayo evaluando visualmente el daño y cosechando la biomasa aérea de la especie Lolium multiflorum. Esta especie indicadora no fue dañada y la biomasa no se afectó más abajo de los 30 cm cuando indaziflam, aplicado a la dosis recomendada de 73 g ai ha−1, se lixivió a través de la columna de suelo. La lixiviación de indaziflam incrementó con cantidades crecientes de lluvia. Por ejemplo, indaziflam se lixivió 12.2 ± 0.8 cm y 27.2 ± 2.6 cm a 5 y 15 cm ha−1, respectivamente. El ranking de herbicidas de mayor a menor movilidad a 15 cm ha−1 de lluvia fue bromacil = norflurazon > indaziflam > simazine = pendimethalin > diuron. Los resultados generales sugieren que la lixiviación de indaziflam fue limitada en el suelo Florida Candler en este estudio. Sin embargo, experimentos de campo son necesarios para confirmar la lixiviación de indaziflam bajo una situación de lluvia natural.

Type
Special Topics
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso, D. G., Koskinen, W. C., Oliveira, R. S., Constantin, J., and Mislankar, S. 2012. Sorption–desorption of indaziflam in selected agricultural soils. J. Agric. Food Chem. 59:1309613101.Google Scholar
Alva, A. K. and Singh, M. 1990. Sorption of bromacil, diuron, norflurazon and simazine at various horizons in two soils. Bull. Environ. Contam. Toxicol. 45:365374.Google Scholar
Anonymous, . 2011. Alion™ herbicide label. Research Triangle Park, NC: Bayer CropScience 9 p. Banks, P. A. and M. G. Markle. 1979. Soil detection and mobility of fluridone. Weed Sci. 27:309–312.Google Scholar
Barbash, J. E., Thelin, G. P., Kolpin, D. W., and Gilliom, R. J. 2001. Major herbicides in groundwater: results from the national water quality assessment. J. Environ. Qual. 30:831845.Google Scholar
Blumhorst, M. R. 1996. Experimental parameters used to study pesticide degradation in soil. Weed Technol. 10:169173.Google Scholar
Brown, R. B. 2003. Soil Texture. http://edis.ifas.ufl.edu/pdffiles/SS/SS16900.pdf. Accessed: September 13, 2011. Gainesville, FL Florida Cooperative Extension Service, University of Florida, Circular 974.Google Scholar
Cobb, A. H. and Reade, J. P. H. 2010. Herbicides and Plant Physiology. 2nd ed. Ames, IA Wiley-Blackwell. 296 p.Google Scholar
Fishel, F. M. 2011. Specifically Regulated Pesticides in Florida—Bromacil. http://edis.ifas.ufl.edu/pdffiles/PI/PI11200.pdf. Accessed: September 13, 2011.Google Scholar
Fleming, G. F., Wax, L. M., Simmons, F. W., and Felsot, A. S. 1992. Movement of alachlor and metribuzin from controlled release formulations in a sandy soil. Weed Sci. 40:606613.Google Scholar
Futch, S. H. 2005. Maximizing Weed Control in Florida Citrus. http://edis.ifas.ufl.edu/pdffiles/HS/HS23700.pdf. Accessed: September 13, 2011.Google Scholar
Futch, S. H. and Singh, M. 1999. Herbicide mobility using soil leaching columns. Bull. Environ. Contam. Toxicol. 62:520529.Google Scholar
Futch, S. H. and Singh, M. 2010. Weeds. Pages 125137 in Rogers, M. E., Dewdney, M. M. and Spann, T. M., eds. 2010 Florida Citrus Pest Management Guide. Gainesville, FL University of Florida, IFAS.Google Scholar
Gerstl, Z. and Yaron, B. 1983a. Behavior of bromacil and napropamide in soils: I. Adsorption and degradation after application from a point source. Soil Sci. Soc. Am. J. 47:474478.Google Scholar
Gerstl, Z. and Yaron, B. 1983b. Behavior of bromacil and napropamide in soils: II. Distribution after application from a point source. Soil Sci. Soc. Am. J. 47:478483.Google Scholar
Hall, C., Van Eerd, L. L., Miller, S. D., Owen, M. D. K., Prather, T. S., Shaner, D. L., Singh, M., Vaughn, K. C., and Weller, S. C. 2000. Future research directions for weed science. Weed Technol. 14:647658.Google Scholar
Heatwole, C. D., Zacharias, S., Mostaghimi, S., and Dillaha, T. A. 1997. Movement of field applied atrazine, metolachlor and bromide in a sandy loam soil. Trans. ASAE (Am. Soc. Agric. Eng.) 40:12671276.Google Scholar
Hebb, E. and Wheeler, W. 1978. Bromacil in Lakeland soil groundwater. J. Environ. Qual. 7:598601.Google Scholar
Huang, L. Q. and Frink, C. R. 1989. Distribution of triazine, simazine, alachlor, and metolachlor in soil profiles in Connecticut. Bull. Environ. Contam. Toxicol. 43:159164.Google Scholar
Jackson, L. K. and Davies, F. S. 1999. Climate and soils. Pages 2144 in Citrus Growing in Florida. Gainesville, FL The University Press of Florida.Google Scholar
James, T. K. and Lauren, D. R. 1995. Determination of bromacil in groundwater and in high organic matter soils. J. Agric. Food Chem. 43:684690.Google Scholar
Jhala, A. J. and Hanson, B. D. 2011. Summer weed control with glyphosate tank mixed with indaziflam or penoxsulam in California orchards and vineyards. Pages 21 in Proceedings of the 51st Annual Conference of the Weed Science Society of America. Portland, OR Weed Science Society of America. [Abstract].Google Scholar
Jhala, A. J., Ramirez, A. H. M., and Singh, M. 2012. Leaching of indaziflam applied at two rates under different rainfall situations. Bull. Environ. Contam. Toxicol. 88:326332.Google Scholar
Kruger, E. L., Zhu, B., and Coats, J. R. 1996. Relative mobilities of atrazine, five atrazine degradates, metalachlor, and simazine in soils from Iowa. Environ. Toxicol. Chem. 5:691695.Google Scholar
Lavy, T. L. and Santelman, P. W. 1986. Herbicide Bioassay as a Research Tool. 3rd ed. Champaign, IL Southern Weed Science Society. Pp. 201217.Google Scholar
Leonard, R. A. and Knisel, W. G. 1988. Evaluating groundwater contamination potential from herbicide use. Weed Technol. 2:207216.Google Scholar
Mueller, T. C. and Banks, P. A. 1991. Flurtamone adsorption and mobility in three Georgia soils. Weed Sci. 39:275280.Google Scholar
Nelson, E. A. and Penner, D. 2007. Leaching of isoxaflutole and the herbicide safeners R-29148 and furilazole. Weed Technol. 21:106109.Google Scholar
Pickett, C. H., Hawkins, L. S., Pehrson, J. E., and O'Connel, N. V. 1992. Irrigation practices, herbicide use and groundwater contamination in citrus production: a case study in California. Agric. Ecosyst. Environ. 41:117.Google Scholar
Reddy, K. N. and Singh, M. 1993. Effect of acrylic polymer adjuvants on leaching of bromacil, diuron, norflurazon, and simazine in soil columns. Bull. Environ. Contam. Toxicol. 50:449457.Google Scholar
Ritter, W. F. 1990. Pesticide contamination of groundwater in the United States—a review. J. Environ. Sci. Health B 25(1):129.Google Scholar
Ritter, W. F., Chirnside, A., and Scarborough, R. 1988. Pesticide leaching in a Coastal Plain soil. Am. Soc. Agric. Eng. 87:2630.Google Scholar
Senseman, S. E., ed. 2007. Herbicide Handbook. 9th ed. Lawrence, KS Weed Science Society of America. 109 p.Google Scholar
Sharma, S. D. and Singh, M. 2001. Susceptibility of Florida Candler fine soil to herbicide leaching. Bull. Environ. Contam. Toxicol. 67:594600.Google Scholar
Sharma, S. D. and Singh, M. 2007. Effect of surfactant on leaching of pendimethalin in Florida Candler fine sand. Bull. Environ. Contam. Toxicol. 78:9194.Google Scholar
Singh, M., Ramirez, A. M., and Edenfield, M. 2011. Indaziflam: A new pre-emergence herbicide for citrus. Pages 21 in Proceedings of the 51st Weed Science Society of America Annual Conference. Portland, OR Weed Science Society of America.Google Scholar
Singh, M. and Tan, S. 1996. Herbicide leaching and its prevention. In Foy, C. L. and Pritchard, D. W., eds. Pesticide Formulation and Adjuvant Technology. New York CRC Press.Google Scholar
Tan, S. and Singh, M. 1995. Effects of cationic surfactants on leaching of bromacil and norflurazon. Bull. Environ. Contam. Toxicol. 55:359365.Google Scholar
Tucker, D. P. H. 1978. Bromacil and diuron residue levels in Florida citrus soils. Pesticide Monit. J. 12:4750.Google Scholar
[USDA] U.S. Department of Agriculture. 2010a. Citrus: Commercial Citrus Inventory. http://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/ccipre/ccipr10.pdf. Accessed: May 5, 2011.Google Scholar
USDA. 2010b. Citrus: 2009–2010 Citrus Summary: Production, Practices and Value. http://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/cspre/cit92310.pdf. Accessed: May 5, 2011.Google Scholar
[USEPA] U.S. Environmental Protection Agency. 2011. Pesticide Fact Sheet for Indaziflam. http://www.epa.gov/opprd001/factsheets/indaziflam.pdf. Accessed: September 2, 2011.Google Scholar
Vencill, W. K. 2002. Herbicide Handbook. 8th ed. Lawrence, KS Weed Science Society of America. 104 p.Google Scholar
Weber, J. B., Swain, L. R., Strek, H. J., and Sartori, J. L. 1986. Herbicide mobility in soil leaching columns. Pages 189200 in Research Methods in Weed Science. 3rd ed. Champaign, IL Southern Weed Science Society.Google Scholar
Wilson, P. C., Lu, H., and Lin, Y. 2011. Norflurazon and simazine removal from surface water using a constructed wetland. Bull. Environ. Contam. Toxicol. 87:426430.Google Scholar
Wu, C. and Santelman, P. W. 1975. Comparison of different soil leaching techniques with four herbicides. Weed Sci. 23:508511.Google Scholar