Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T11:15:26.175Z Has data issue: false hasContentIssue false

Labor-Saving Weed Technologies for Lowland Rice Farmers in sub-Saharan Africa

Published online by Cambridge University Press:  20 January 2017

Jonne Rodenburg*
Affiliation:
Africa Rice Center (AfricaRice), P.O. Box 33581, Dar es Salaam, Tanzania
Kazuki Saito
Affiliation:
AfricaRice, 01 BP 2031, Cotonou, Benin
Runyambo Irakiza
Affiliation:
Africa Rice Center (AfricaRice), P.O. Box 33581, Dar es Salaam, Tanzania
Derek W. Makokha
Affiliation:
Africa Rice Center (AfricaRice), P.O. Box 33581, Dar es Salaam, Tanzania
Enos A. Onyuka
Affiliation:
Humboldt-Universität zu Berlin, Faculty of Plant Sciences, Berlin, Germany
Kalimuthu Senthilkumar
Affiliation:
Africa Rice Center (AfricaRice), P.O. Box 33581, Dar es Salaam, Tanzania
*
Corresponding author's E-mail: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Time requirements, weed control efficacy, and yield effects of three labor-saving weed technologies were tested against hand weeding during three seasons in 2012 and 2013. The technologies included two hand-operated mechanical weeders, the straight-spike and the twisted-spike floating weeder, and the PRE application of oxadiazon. The straight-spike floating weeder reduced weeding time by 32 to 49%, the twisted-spike floating weeder reduced weeding time by 32 to 56%, and the application of herbicide required 88 to 97% less time than hand weeding. Herbicide application provided the best weed control in two of the three seasons. No differences in weed control efficacy were observed between mechanical and hand weeding. Yield differences were only observed in season 3 with higher rice yields after PRE application of oxadiazon compared with other weed management treatments.

Los requisitos de tiempo, la eficacia del control de malezas, y los efectos en el rendimiento de tres tecnologías para reducir las labores manual fueron evaluados en comparación con la deshierba manual durante tres temporadas productivas en 2012 y 2013. Las tecnologías incluyeron dos cultivadores mecánicos operados manualmente, el cultivador flotante de picos rectos, el cultivador flotante de picos curvados, y la aplicación PRE de oxadiazon. El cultivador flotante de picos rectos redujo el tiempo de deshierba de 32 a 49%, el cultivador flotante de picos curvados redujo el tiempo de deshierba de 32 a 56%, y la aplicación de herbicidas requirió 88 a 97% menos tiempo de deshierba manual. La aplicación de herbicidas brindó el mejor control de malezas en dos de las tres temporadas. No se observaron diferencia en la eficacia en el control de malezas entre la deshierba mecánica y la manual. Las diferencias en el rendimiento fueron solamente observadas en la tercera temporada con mayores rendimientos del arroz después de la aplicación PRE de oxadiazon al compararse con los otros tratamientos de manejo de malezas.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons license is included and the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

Footnotes

Associate Editor for this paper: Eric Webster, Louisiana State University.

References

Literature Cited

Akobundu, IO (1987) Weed Science in the Tropics—Principles and Practices. Chichester, UK: John Wiley & Sons. 522 pGoogle Scholar
Akobundu, IO, Fagade, SO (1978) Weed problems of African rice lands. Pages 181192 in Buddenhagen, IW, Persley, GJ, eds. Rice in Africa, London, UK: Academic Press Google Scholar
Becker, M, Johnson, DE (2001) Improved water control and crop management effects on lowland rice productivity in West Africa. Nutr Cycl Agroecosyst 59:119127 Google Scholar
Becker, M, Johnson, DE, Wopereis, MCS, Sow, A (2003) Rice yield gaps in irrigated systems along an agro-ecological gradient in West Africa. J Plant Nutr Soil Sci 166:6167 Google Scholar
Chauhan, BS, Johnson, DE (2011) Growth response of direct-seeded rice to oxadiazon and bispyribac-sodium in aerobic and saturated soils. Weed Sci 59:119122 Google Scholar
Diagne, A, Amovin-Assagba, E, Futakuchi, K, Wopereis, MCS (2013) Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. Pages 3545 in Wopereis, MCS, Johnson, DE, Ahmadi, N, Tollens, E, Jalloh, A, eds. Realizing Africa's Rice Promise. Wallingford, Oxfordshire, UK: CABI Google Scholar
Gongotchame, S, Dieng, I, Ahouanton, K, Johnson, JM, Alognon, AD, Tanaka, A, Atta, S, Saito, K (2014) Participatory evaluation of mechanical weeders in lowland rice production systems in Benin. Crop Prot 61:3237 Google Scholar
Haefele, SM, Johnson, DE, Diallo, S, Wopereis, MCS, Janin, I (2000) Improved soil fertility and weed management is profitable for irrigated rice farmers in Sahelian West Africa. Field Crop Res 66:101113 Google Scholar
Imeokparia, PO (1994) Weed control in flooded rice with various herbicide combinations in the southern Guinea savanna zone of Nigeria. Int J Pest Manag 40:3139 Google Scholar
Johnson, DE (1997) Weeds of rice in West Africa. Bouaké, Cote d'Ivoire WARDA/DFID/CTA. 312 pGoogle Scholar
Kremer, AR, Lock, C (1993) Where food is capital–labor allocation in cereals production, NW Mali. Agric Syst 41:197213 Google Scholar
Krupnik, TJ, Shennan, C, Settle, WH, Demont, M, Ndiaye, AB, Rodenburg, J (2012) Improving irrigated rice production in the Senegal River Valley through experiential learning and innovation. Agric Syst 109:101112 Google Scholar
Lawrence, PR, Dijkman, JT (1997) The introduction of animal traction into inland valley regions. 2. Dry season cultivation and the use of herbicides in rice. J Agric Sci 129:7175 Google Scholar
Lodin-Bergman, J, Paulson, S, Mugenyi, MS (2012) New seeds, gender norms and labor dynamics in Hoima District, Uganda. J East Afr Stud 6:405422 Google Scholar
Ndiiri, JA, Mati, BM, Home, PG, Odongo, B, Uphoff, N (2013) Adoption, constraints and economic returns of paddy rice under the system of rice intensification in Mwea, Kenya. Agric Water Manage 129:4455 Google Scholar
Nhamo, N, Rodenburg, J, Zenna, N, Makombe, G, Luzi-Kihupi, A (2014) Narrowing the rice yield gap in East and Southern Africa: using and adapting existing technologies. Agric Syst 131:4555 Google Scholar
Ogwuike, P, Rodenburg, J, Diagne, A, Agboh-Noameshie, R, Amovin-Assagba, E (2014) Weed management in upland rice in sub-Saharan Africa: impact on labor and crop productivity. Food Secur 6:327337 Google Scholar
Rodenburg, J, Johnson, DE (2009) Weed management in rice-based cropping systems in Africa. Adv Agron 103:149218 Google Scholar
Seck, PA, Diagne, A, Mohanty, S, Wopereis, MCS (2012) Crops that feed the world 7: rice. Food Secur 4:724 Google Scholar
Senthilkumar, K, Bindraban, PS, Thiyagarajan, TM, de Ridder, N, Giller, KE (2008) Modified rice cultivation in Tamil Nadu, India: yield gains and farmers' (lack of) acceptance. Agric Syst 98:8294 Google Scholar
Senthilkumar, K, Lubbers, M, de Ridder, N, Bindraban, PS, Thiyagarajan, TM, Giller, KE (2011) Policies to support economic and environmental goals at farm and regional scales: outcomes for rice farmers in Southern India depend on their resource endowment. Agric Syst 104:8293 Google Scholar
Sokal, RR, Rohlf, FJ (1995) Biometry. New York: W.H. Freeman and Company. 887 p van Heemst HDJ (1985) The influence of weed competition on crop yield. Agric Syst 18:8193 Google Scholar
VSN-International (2013) GenStat for Windows 16th edn. Hemel Hempstead, UK: VSN International. http://www.GenStat.co.uk Google Scholar