Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T15:17:43.835Z Has data issue: false hasContentIssue false

Integrating Weed and Vegetable Crop Management with Multifunctional Air-Propelled Abrasive Grits

Published online by Cambridge University Press:  20 January 2017

Sam E. Wortman*
Affiliation:
Department of Crop Sciences, University of Illinois, Urbana, IL 61801
*
Corresponding author's E-mail: [email protected].

Abstract

Abrasive weed control is a novel weed management tactic that has great potential to increase the profitability and sustainability of organic vegetable cropping systems. The objective of this study was to determine the effect of air-propelled organic abrasive grits (e.g., organic fertilizers) on weed seedling emergence and growth and vegetable crop growth. A series of thirteen greenhouse trials were conducted to determine the susceptibility of weeds to abrasive weed control with one of six organic materials including: corn cob grits, corn gluten meal, greensand fertilizer, walnut shell grits, soybean meal, and bone meal fertilizer. In addition, crop injury was quantified to determine the potential utility of each organic material as abrasive grits in tomato and pepper cropping systems. Of the six organic materials, corn gluten meal, greensand fertilizer, walnut shell grits, and soybean meal provided the broadest range of POST weed control. For example, one blast of corn gluten meal and greensand fertilizer reduced Palmer amaranth (one-leaf stage) seedling biomass by 95 and 100% and green foxtail (one-leaf stage) biomass by 94 and 87%, respectively. None of the organic materials suppressed weed seedling emergence when applied to the soil surface, suggesting that residual weed control with abrasive grits is unlikely. Tomato and pepper stems were relatively tolerant of abrasive grit applications, though blasting with select materials did increase stem curvature in tomato and reduced biomass (corn cob grit) and relative growth rate (corn gluten meal and greensand) in pepper. Results suggest that organic fertilizers can be effectively used as abrasive grits in vegetable crops, simultaneously providing weed suppression and supplemental crop nutrition. Field studies are needed to identify cultural practices that will increase the profitability of multifunctional abrasive weed control in organic specialty crops.

El control abrasivo de malezas es una táctica novedosa para el manejo de malezas que tiene gran potencial para incrementar la rentabilidad y la sostenibilidad de los sistemas de cultivos de vegetales orgánicos. El objetivo de este estudio fue determinar el efecto de la aplicación de partículas abrasivas orgánicas (e.g. fertilizantes orgánicos) con aire a alta presión en la emergencia y crecimiento de plántulas de malezas y en el crecimiento de cultivos de vegetales. Se realizó una serie de trece experimentos de invernadero para determinar la susceptibilidad de las malezas al control abrasivo de malezas con uno de seis materiales orgánicos incluyendo: partículas de mazorca de maíz, harina de gluten de maíz, fertilizante de arena verde, partículas de cáscara de nuez, harina de soya, y fertilizante de harina de hueso. Adicionalmente, se cuantificó el daño del cultivo para determinar la utilidad potencial de cada material orgánico como partícula abrasiva en sistemas de cultivos de tomate y pimentón. De los seis materiales orgánicos, la harina de gluten de maíz, el fertilizante de arena verde, las partículas de cáscara de nuez y la harina de soya brindaron el mayor rango de control POST de malezas. Por ejemplo, una aspersión de harina de gluten de maíz y el fertilizante de arena verde redujeron la biomasa de Amaranthus palmeri (estado de una hoja) en 95 y 100% y de Setaria viridis (estado de una hoja) en 94 y 87%, respectivamente. Ninguno de los materiales orgánicos suprimió la emergencia de plántulas de malezas cuando se aplicó a la superficie del suelo, lo que sugiere que el control de malezas residual con partículas abrasivas es poco probable. Los tallos del tomate y del pimentón fueron relativamente tolerantes a las aplicaciones de partículas abrasivas, aunque la aplicación con aire a presión de los materiales seleccionados incrementó la curvatura del tallo en tomate y redujo la biomasa (partículas de mazorca de maíz) y la tasa de crecimiento relativo (harina de gluten de maíz y arena verde) del pimentón. Los resultados sugieren que los fertilizantes orgánicos pueden ser usados efectivamente como partículas abrasivas en cultivos de vegetales, brindando simultáneamente supresión de malezas y nutrición suplementaria al cultivo. Se necesitan estudios de campo para identificar prácticas culturales que incrementen la rentabilidad del control abrasivo de malezas multifuncional en cultivos de vegetales orgánicos.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bingaman, BR, Christians, NE (1995) Greenhouse screening of corn gluten meal as a natural control product for broadleaf and grass weeds. HortSci 30:12561259 Google Scholar
Bonanno, AR (1996) Weed management in plasticulture. HortTech 6:186189 Google Scholar
Boydston, RA, Morra, MJ, Borek, V, Clayton, L, Vaughn, SF (2011) Onion and weed response to mustard (Sinapis alba) seed meal. Weed Sci 59:546552 Google Scholar
Culpepper, AS, Grey, TL, Vencill, WK, Kichler, JM, Webster, TM, Brown, SM, York, AC, Davis, JW, Hanna, WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620626 Google Scholar
Dyer, WE (1995) Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci 43:498503 Google Scholar
Forcella F (2009a) Potential use of abrasive air-propelled agricultural residues for weed control Weed Res 49:341345 Google Scholar
Forcella F (2009b) Potential of air-propelled abrasives for selective weed control. Weed Technol 23:317320 Google Scholar
Forcella, F (2012) Air-propelled abrasive grit for postemergence in-row weed control in field corn. Weed Technol 26:161164 Google Scholar
Forcella, F, James, T, Rahman, A (2011) Post-emergence weed control through abrasion with an approved organic fertilizer. Renew Agr Food Syst 26:3137 Google Scholar
Lee, KC, Campbell, RW (1969) Nature and occurrence of juglone in Juglans nigra L. Hort Sci 4:297298 Google Scholar
Liebman, M, Davis, AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:2747 Google Scholar
Liebman, M, Davis, AS (2009) Managing weeds in organic farming systems: an ecological approach. Pages 173195 in Francis, C, ed. Organic Farming: The Ecological System. Agronomy Monograph 54, ASA-CSSA-SSSA, Madison, WI Google Scholar
McNaughton, SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329336 Google Scholar
Mesbah, AO, Miller, SD (1999). Fertilizer placement affects jointed goatgrass (Aegilops cylindrica) competition in winter wheat (Triticum aestivum). Weed Technol 13:374377 Google Scholar
Norremark, M, Sorensen, CG, Jorgensen, RN (2006) Hortibot: feasibility study of a plant nursing robot performing weeding operations – Part III. ASABE Annual International Meeting Paper 067023, 14 pGoogle Scholar
Norsworthy, JK, Meehan, JT (2005) Use of isothiocyanates for suppression of Palmer amaranth (Amaranthus palmeri), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci 53:884890 Google Scholar
Webber, CL III, Shrefler, JW, Taylor, MJ. 2008. Corn gluten meal as an alternative weed control option for spring-transplanted onions. Intern J Veg Sci 13:1733 Google Scholar