Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T10:57:11.325Z Has data issue: false hasContentIssue false

Influence of Weed Height and Glufosinate plus 2,4-D Combinations on Weed Control in Soybean with Resistance to 2,4-D

Published online by Cambridge University Press:  20 January 2017

Brett D. Craigmyle
Affiliation:
Division of Plant Sciences, 205 Waters Hall, University of Missouri, Columbia, MO 65202
Jeffrey M. Ellis
Affiliation:
Dow Agrosciences LLC, 701 Tomahawk Court, Smithville, MO 64089
Kevin W. Bradley*
Affiliation:
Division of Plant Science, University of Missouri, 201 Waters Hall, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected]

Abstract

The introduction of transgenic crops with resistance to 2,4-D will provide growers with new weed management options in soybean. Field and greenhouse experiments were conducted in 2010 and 2011 to determine the influence of weed height on compatibility of glufosinate and 2,4-D in resistant soybean. Results from these experiments indicate a significant increase in the rate of glufosinate or 2,4-D is needed when applied alone in order to achieve similar levels of weed control as lower rates of glufosinate and 2,4-D combinations. Mixtures of glufosinate and 2,4-D were more effective in controlling common waterhemp, Asiatic dayflower, and barnyardgrass than either herbicide alone, and with the magnitude of difference greater as the height of common waterhemp increased. Large crabgrass control decreased when glufosinate was applied with 2,4-D compared with glufosinate alone, with the magnitude of the reduction greater as weed height increased. Sequential application of glufosinate and 2,4-D eliminated the antagonism noted with tank mixtures. Soybean yields were also reduced by approximately 3% in response to 30 to 35–cm compared to 10 to 15–cm herbicide applications because of the combination of weed interference and reduced control. Overall, results from these experiments indicate that glufosinate plus 2,4-D combinations are likely to provide increased control of problematic weeds like Asiatic dayflower and common waterhemp while providing similar grass control as herbicide programs that contain glufosinate alone.

La introducción de cultivos transgénicos con resistencia a 2,4-D dará a los productores opciones nuevas de manejo en soya. Experimentos de campo y de invernadero fueron realizados en 2010 y 2011 para determinar la influencia de la altura de las malezas sobre la compatibilidad de glufosinate y 2,4-D en soya resistente. Los resultados de estos experimentos indican que cuando glufosinate o 2,4-D son aplicados individualmente, se necesita un aumento en la dosis para alcanzar niveles de control de malezas similares a dosis bajas de combinaciones de glufosinate y 2,4-D. Las mezclas de glufosinate y 2,4-D fueron más efectivas para el control de Amaranthus rudis, Commelina communis, y Echinochloa crus-galli que cualquiera de estos herbicidas solos, y la magnitud de esta diferencia aumentó cuando la altura de A. rudis incrementó. El control de Digitaria sanguinalis disminuyó cuando glufosinate fue aplicado con 2,4-D al compararse con glufosinate solo, con una mayor reducción del control al aumentar la altura de las malezas. Aplicaciones secuenciales de glufosinate y 2,4-D eliminaron el antagonismo observado con mezclas en tanque. También, los rendimientos de la soya se redujeron en aproximadamente 3% en respuesta a aplicaciones de herbicidas a 30 a 35 cm al compararse con 10 a 15 cm debido a la combinación de la interferencia de las malezas y el control reducido. En general, los resultados de estos experimentos indican que las combinaciones de glufosinate más 2,4-D pueden incrementar el control de malezas problemáticas como C. communis y A. rudis al tiempo que brindan un control de malezas gramíneas similar a los programas de herbicidas que contienen glufosinate solo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akobundu, I. O., Sweet, R. D., and Duke, W. B. 1975. A method of evaluating herbicide combinations and determining herbicide synergism. Weed Sci. 23:2025.CrossRefGoogle Scholar
Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine-resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10:570575.CrossRefGoogle Scholar
Anonymous. 2011. Agri Star® 2,4-D amine product label. Ankeny, IA Albaugh Inc. 5 p. http:www.cdms.net/LDat/Id4JF000.pdf. Accessed March 13, 2012.Google Scholar
Bernards, M. L., Crespo, R. J., Kruger, G. R., Gaussoin, R. E., and Tranel, P. J. 2012. Confirmation of a 2,4-D resistant waterhemp (Amaranthus tuberculatus) population in Nebraska. Weed Sci. Soc. Am. Abstr. 237.Google Scholar
Bradley, K. W., Hagood, E. S. Jr., and Davis, P. H. 2003. Evaluation of postemergence herbicide combinations for long-term trumpetcreeper (Campsis radicans) control in corn (Zea mays). Weed Technol. 17:718723.CrossRefGoogle Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron. J. 81:665672.Google Scholar
Colby, S. R. 1967. Calculating synergistic and antagonistic responses of herbicide combinations. Weeds. 15:2022.CrossRefGoogle Scholar
Croon, K. A., Ketchersid, M. L., and Merkle, M. C. 1989. Effect of bentazon, imazaquin, and chlorimuron on the absorption and translocation of the methyl ester of haloxyfop. Weed Sci. 37:645650.CrossRefGoogle Scholar
Culpepper, A. S., Jordan, D. L., York, A. C., Corbin, F. T., and Sheldon, Y. 1999. Influence of adjuvants and bromoxynil on absorption of clethodim. Weed Technol. 13:536541.CrossRefGoogle Scholar
Dalley, C. D., Kells, J. J., and Renner, K. A. 2004. Effect of glyphosate application timing and row spacing on corn (Zea mays) and soybean (Glycine max) yields. Weed Technol. 18:165176.CrossRefGoogle Scholar
Duke, S. O. 1992. Modes of action of herbicides used in cotton. Pages 403437 in McWhorter, C. G. and Abernathy, J. L., eds. Weeds of Cotton. Memphis, TN The Cotton Foundation.Google Scholar
Everitt, J. D. and Keeling, J. W. 2007. Weed control and cotton (Gossypium hirsutum) response to preplant applications of dicamba, 2,4–D, and diflufenzopyr plus dicamba. Weed Technol. 21:506510.CrossRefGoogle Scholar
Everman, W. J., Burke, I. C., Allen, J. R., Collins, J., and Wilcut, J. W. 2007. Weed control and yield with glufosinate-resistant cotton weed management systems. Weed Technol. 21:695701.CrossRefGoogle Scholar
Flint, J. L., Cornelius, P. L., and Barrett, M. 1988. Analyzing herbicide interactions: a statistical treatment of Colby's method. Weed Technol. 2:304309.CrossRefGoogle Scholar
Gilbert, F. A. 1946. The status of plant-growth substances and herbicides in 1945. Chem. Rev. 39:199218.CrossRefGoogle Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol. 13:354360.CrossRefGoogle Scholar
Gower, S. A., Loux, M. M., Cardina, J., Harrison, S. K., Sprankle, P. L., Probst, N. J., Bauman, T. T., Bugg, W., Curran, W. S., Currie, R. S., Harvey, R. G., Johnson, W. G., Kells, J. J., Owen, M.D.K., Regehr, D. L., Slack, C. H., Spaur, M., Sprague, C. L., Vangessel, M., and Young, B. G. 2003. Effect of postemergence glyphosate application timing on weed control and grain yield in glyphosate-resistant corn: results of a 2-yr multistate study. Weed Technol. 17:821828.CrossRefGoogle Scholar
Grossman, K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Manag. Sci. 66:113120.Google Scholar
Guza, C. J., Ransom, C. V., and Smith, C. M. 2003). Glufosinate rates, timings, and additives for weed control in glufosinate-resistant sugar beet. J. Sugar Beet Res. 40:2951.CrossRefGoogle Scholar
Hart, S. E. and Maxwell, D. J. 1997. Postemergence broadleaf weed control in corn. DeKalb, IL: Research report. Proc. North Cent. Weed Sci. Soc. 52:128129.Google Scholar
Hartzler, R. G., Buhler, D. D., and Stoltenberg, D. E. 1999. Emergence characteristics of four annual weed species. Weed Sci. 47:578584.CrossRefGoogle Scholar
Hatzios, K. K. and Penner, D. 1985. Interactions of herbicides with other agrochemicals in higher plants. Rev. Weed Sci. 1:152.Google Scholar
Heap, I. 2010. The international survey of herbicide resistant weeds. www.weedscience.org. Accessed February 18, 2012.Google Scholar
Hennigh, D. S., Al-Khatib, K., and Tuinstra, M. R. 2010. Postemergence weed control in acetolactate synthase–resistant grain sorghum. Weed Technol. 24:219225.CrossRefGoogle Scholar
Hillger, D. E., Schultz, M. E., Ruen, D. C., Maddy, B. E., Culpepper, A. S., Loux, M. M., and Young, B. G. 2009. Effect of weed size on control of weeds with 2,4-D + glyphosate tank mixes in corn. Proc. North Cent. Weed Sci. Soc. 64:121.Google Scholar
Hoss, N. E., Al-Khatib, K., Peterson, D. E., and Loughin, T. M. 2003. Efficacy of glyphosate, glufosinate, and imazethapyr on selected weed species. Weed Sci. 51:110117.CrossRefGoogle Scholar
Industry Task Force II on 2,4-D research data. 2005. Issue backgrounder. http://www.24d.org/background/Backgrounder-What-is-24D-Dec-2005.pdf. Accessed January 14, 2010.Google Scholar
Isaacs, A., Hatzios, K. K., Wilson, H. P., and Toler, J. M. 2006. Halosulfuron and 2,4-D mixtures' effects on common lambsquarters (Chenopodium album). Weed Technol. 20:137142.CrossRefGoogle Scholar
Kelley, K. B. and Riechers, D. E. 2007. Recent developments in auxin biology and new opportunities for auxinic herbicide research. Pestic. Biochem. Physiol. 89:111.CrossRefGoogle Scholar
Knezevic, S. Z., Datta, A., Scott, J., Klein, R. N., and Golus, J. 2009. Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23:507512.CrossRefGoogle Scholar
Koger, C. H., Price, A. J., Faircloth, J. C., Wilcut, J. W., and Nichols, S. P. 2007a. Effect of residual herbicides used in the last POST-directed application on weed control and cotton yield in glyphosate- and glufosinate-resistant cotton. Weed Technol. 21:378383.CrossRefGoogle Scholar
Koger, C. H., Burke, I. C., Miller, D. K., Kendig, J. A., Reddy, K. N., and Wilcut, J. W. 2007b. MSMA antagonizes glyphosate and glufosinate efficacy on broadleaf and grass weeds. Weed Technol. 21:159165.CrossRefGoogle Scholar
Krausz, R. F., Kapusta, G., Mathews, J. L., Baldwin, J. L., and Maschoff, J. 1999. Evaluation of glufosinate-resistant corn (Zea mays) and glufosinate: efficacy on annual weeds. Weed Technol. 13:691696.CrossRefGoogle Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2008. Response and survival of rosette-stage horseweed (Conyza canadensis) after exposure to2,4-D. Weed Sci. 56:748752.CrossRefGoogle Scholar
Kruger, G. R., Davis, V. M., Weller, S. C., and Johnson, W. G. 2010. Control of horseweed (Conyza canadensis) with growth regulator herbicides. Weed Technol. 24:425429.CrossRefGoogle Scholar
Loux, M. 2008. Can the DHT trait solve all of our glyphosate resistance problems? Proc. North Cent. Weed Sci. Soc. 63:86.Google Scholar
Martin, J. R. and Tutt, C. R. 2007. Johnsongrass control with postemergence corn herbicides applied alone of in tank mix combinations. Proc. North Cent. Weed. Sci. Soc. 62:12.Google Scholar
Mueller, T. C., Witt, W. W., and Barrett, M. 1989. Antagonism of johnsongrass (Sorghum halepense) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4–D. Weed Technol. 3:8689.CrossRefGoogle Scholar
Mulugetta, D. and Boerboom, C. M. 2000. Critical time of weed removal in glyphosate-resistant Glycine max . Weed Sci. 48:3542.CrossRefGoogle Scholar
Nandula, V. K. and Manthey, F. A. 2002. Response of kochia (Kochia scoparia) inbreds to 2,4-D and dicamba. Weed Technol. 16:5054.CrossRefGoogle Scholar
Norsworthy, J. K. and Oliveria, M. J. 2007. Tillage and soybean effects on common cocklebur (Xanthium strumarium) emergence. Weed Sci. 55:474480.CrossRefGoogle Scholar
Olson, W. and Naewaja, J. D. 1982. Effect of MCPA on 14C-diclofop uptake translocation. Weed Sci. 30:5963.CrossRefGoogle Scholar
Owen, M.D.K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Pereira, W. and Crabtree, G. 1986. Absorption, translocation, and toxicity of glyphosate and oxyfluorfen in yellow nutsedge (Cyperus esculentus). Weed Sci. 34:923929.CrossRefGoogle Scholar
Price, A. J., Koger, C. H., Wilcut, J. W., Miller, D., and Santen, E. V. 2008. Efficacy of residual and non-residual herbicides used in cotton production systems when applied with glyphosate, glufosinate, or MSMA. Weed Technol. 22:459466.CrossRefGoogle Scholar
Sankula, S. 2006. Quantification of the Impacts on U.S. Agriculture of Biotechnology-Derived Crops Planted in 2005. Washington, DC National Center for Food and Agricultural Policy.Google Scholar
Sarabi, V., Mohassel, M.H.R., and Valizadeh, M. 2011. Response of redroot pigweed (Amaranthus retroflexus) to tank mixtures of 2,4-D plus MCPA with foramsulfuron. Aust. J. Crop Sci. 5:605610.Google Scholar
Sellers, B. A., Ferrell, J. A., MacDonald, G. E., and Kline, W. N. 2009. Dogfennel (Eupatorium capillifolium) size at application affects herbicide efficacy. Weed Technol. 23:247250.CrossRefGoogle Scholar
Siebert, J. D., Griffin, J. L., and Jones, C. A. 2004. Red morningglory (Ipomoea coccinea) control with 2,4-D and alternative herbicides. Weed Technol. 18:3844.CrossRefGoogle Scholar
Simpson, D. M., Rune, D. C., Scherer, E. F., Peterson, M. A., Ditmars, S. C., Ellis, J. M., Richburg, J. S., and Ellis, D. T. 2009. Performance of Dow Agrosciences herbicide tolerance trait in soybean. Proc. North Cent. Weed Sci. Soc. 64:21.Google Scholar
Steckel, G. J., Wax, L. M., Simmons, F. W., and Phillips, W. H. II. 1997a. Glufosinate efficacy on annual weeds is influenced by rate and growth stage. Weed Technol. 11:484488.CrossRefGoogle Scholar
Steckel, G. J., Hart, S. E., and Wax, L. M. 1997b. Absorption and translocation of glufosinate on four weed species. Weed Sci. 45:378381.CrossRefGoogle Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20:10471051.CrossRefGoogle Scholar
Tharp, B. E., Shabenberger, O., and Kells, J. J. 1999. Response of annual weed species to glufosinate and glyphosate. Weed Technol. 13:542547.CrossRefGoogle Scholar
Ulloa, S. M. and Owen, M.D.K. 2009. Response of Asiatic dayflower (Commelina communis) to glyphosate and alternatives in soybean. Weed Sci. 57:7480.CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture. 2009. Agriculture Statistics Board. June Acreage Report. http://www.nass.usda.gov/Charts_and_Maps/graphics/cornac.gif. Accessed January 15, 2010.Google Scholar
Van Acker, R. C., Wiese, S. F., and Swanton, C. J. 1993. Influence of interference from a mixed weed species stand on soybean (Glycine max (L.) Merr.) growth. Can. J. Plant Sci. 73:1293–1204.Google Scholar
Vanneste, S. and Friml, J. Auxin: a trigger for change in plant development. Cell. 136:10051016.CrossRefGoogle Scholar
Waltz, A. L., Martin, A. R., and Horky, K. T. 2003. Weed control in grain sorghum. N. Cent. Weed Sci. Res. Rep. 60:4546.Google Scholar
Woodward, A. W. and Bartel, B. 2005. Auxin: regulation, action, and interaction. Ann. Bot. 95:707735.CrossRefGoogle ScholarPubMed
Wright, T. R., Shan, G., Walsh, T. A., Lira, J. M., Cui, C., Song, P., Zhuang, M., Arnold, N. L., Lin, G., Russell, S. M., Cicchillo, R. M., Peterson, M. A., Simpson, D. M., Zhou, N., Ponsamuel, J., and Zhang, Z. 2010. Robust crop resistance to broadleaf and grass herbicides provided by aryloxalkanoate dioxygenase transgenes. PNAS. 107:2024020245.CrossRefGoogle ScholarPubMed
Young, B. G. 1996. Interactions of sethoxydim and corn (Zea mays) postemergence broadleaf herbicides on three annual grasses. Weed Technol. 10:914922.CrossRefGoogle Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate resistant crops. Weed Technol. 20:301307.CrossRefGoogle Scholar