Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T04:59:35.317Z Has data issue: false hasContentIssue false

Influence of Water Quality and Coapplied Agrochemicals on Efficacy of Glyphosate

Published online by Cambridge University Press:  20 January 2017

Gurinderbir S. Chahal
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
David L. Jordan*
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
James D. Burton
Affiliation:
Department of Horticultural Science, North Carolina State University, Box 7609, Raleigh, NC 27695
David Danehower
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
Alan C. York
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
Peter M. Eure
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
Bart Clewis
Affiliation:
Department of Crop Science, North Carolina State University, Box 7620, Raleigh, NC 27695
*
Corresponding author's E-mail: [email protected].

Abstract

Experiments were conducted in 2008, 2009, and 2010 to determine the influence of water source as carrier and other agrochemicals on glyphosate efficacy and physicochemical compatibility. Glyphosate efficacy was not affected by most water sources, when compared with deionized water, although response was not consistent across all weed species, including cereal rye, common lambsquarters, common ragweed, goosegrass, Italian ryegrass, large crabgrass, Palmer amaranth, tall morningglory, and wheat. Control by glyphosate was not negatively affected when coapplied with cloransulam-methyl, dicamba, flumioxazin, pyrithiobac-sodium, thifensulfuron-methyl plus tribenuron-methyl, trifloxysulfuron-sodium, and 2,4-D but was affected by acifluorfen and glufosinate. Calcium, manganese, and zinc solutions consistently reduced weed control by glyphosate, whereas boron seldom affected efficacy. Compared with deionized water, Italian ryegrass control was affected by water sources when applied at seedling and jointing stages more so than at tillering and heading growth stages. Calcium, manganese, and zinc reduced control regardless of growth stage. Precipitates were not produced when glyphosate was applied with the water sources or fertilizer solutions. However, transient precipitates developed when glyphosate was coapplied with cloransulam-methyl, flumioxazin, thifensulfuron-methyl plus tribenuron-methyl, and trifloxysulfuron-sodium but not when coapplied with acifluorfen, dicamba, glufosinate, pyrithiobac-sodium, and 2,4-D. Solution pH ranged from 4.11 to 5.60 after glyphosate was added, regardless of solution pH before glyphosate addition.

En 2008, 2009 y 2010 se realizaron experimentos para determinar la influencia del tipo de agua utilizado como agente transportador y otros agroquímicos en la eficacia del glifosato y la compatibilidad físico-química. La eficacia del glifosato no se afectó por la mayoría de los tipos de agua, en comparación con el agua des-ionizada, aunque la respuesta no fue consistente para todas las especies de malezas, incluyendo, Secale cereale, Chenopodium album, Ambrosia artemisiifolia, Eleusine indica, Lolium multiflorum, Digitaria sanguinalis, Amaranthus palmeri, Ipomoea purpurea y Triticum aestivum. El control con glifosato no fue afectado negativamente cuando se aplicó en conjunto con cloransulam-methyl, dicamba, flumioxazin, pyrithiobac-sodium, thifensulfuron-methyl más tribenuron-methyl, trifloxysulfuron-sodium, y 2,4-D, pero sí fue afectado por acifluorfen y glufosinate. Las soluciones de calcio, manganeso, y zinc redujeron consistentemente el control de malezas con glifosato mientras que el boro rara vez afectó la eficacia. En comparación con el agua des-ionizada, el control de Lolium multiflorum fue afectado por los tipos de agua utilizada cuando esta se aplicó en estado de plántula y en la etapa de ramificación, en mayor grado que en las etapas de macollamiento y floración. El calcio, manganeso y zinc redujeron el control sin importar la etapa de crecimiento. No se produjeron precipitados cuando el glifosato fue aplicado con agua o soluciones de fertilizante. Sin embargo, se desarrollaron precipitados transitorios cuando el glifosato se aplicó con cloransulam-methyl, flumioxazin, thifensulfuron-methyl más tribenuron-methyl, y trifloxysulfuron-sodium, pero no así con acifluorfen, dicamba, glufosinate, pyrithiobac-sodium, y 2,4-D. El pH de la solución varió de 4.11 a 5.60 después de que se agregó el glifosato sin importar el pH anterior a la adición de glifosato.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abouziena, H. F., Elmergawi, R. A., Sharma, S., Omar, A. A., and Singh, M. 2009. Zinc antagonizes glyphosate efficacy on yellow nutsedge (Cyperus esculentus). Weed Sci. 57:1620.Google Scholar
Ambach, R. M. and Ashford, R. 1982. Effect of variations in drop makeup on the phytotoxicity of glyphosate. Weed Sci. 30:221224.Google Scholar
Bailey, W. A., Poston, D. H., Wilson, H. P., and Hines, T. E. 2002. Glyphosate interactions with manganese. Weed Technol. 16:792799.Google Scholar
Baird, D. D., Upchurch, R. P., Homesley, W. B., and Ranz, J. E. 1971. Introduction of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control. Pages 6468 in Proceedings of the 26th North Central Weed Control Conference. Champaign, IL NCWSS.Google Scholar
Bernards, M. L., Thelen, K. D., and Penner, D. 2005a. Glyphosate efficacy is antagonized by manganese. Weed Technol. 19:2734.Google Scholar
Bernards, M. L., Thelen, K. D., Penner, D., Muthukumaran, R. B., and McCracken, J. L. 2005b. Glyphosate interaction with manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci. 53:787794.Google Scholar
Berry, W. 2007. Symptoms of Deficiency in Essential Minerals: Topic 5.1 in Plant Physiology Online. 4th ed. Sunderland, MA Sinauer. http://4e.plantphys.net/article.php?ch55&id5289 Accessed: December 3, 2011.Google Scholar
Buhler, D. D. and Burnside, O. C. 1983a. Effect of spray components on glyphosate toxicity to annual grasses. Weed Sci. 31:124130.CrossRefGoogle Scholar
Buhler, D. D. and Burnside, O. C. 1983b. Effect of water quality, carrier volume, and acid on glyphosate phytotoxicity. Weed Sci. 31:163169.Google Scholar
Chuah, T. S., Teh, H. H., Cha, T. S., and Ismail, B. S. 2008. Antagonism of glufosinate ammonium activity caused by glyphosate in the tank mixtures used for control of goosegrass (Eleusine indica Gaertn.). Plant Prot. Q. 23:1161–119.Google Scholar
Coetzer, E., Al-Khatib, K., and Peterson, D. E. 2002. Glufosinate efficacy on Amaranthus species in glufosinate-resistant soybean (Glycine max). Weed Technol. 16:326331.Google Scholar
Frans, R. E., Talbert, R., Marx, D., and Crowley, H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 2946 in Camper, N. D., ed. Research Methods in Weed Science. Champaign, IL Southern Weed Science Society.Google Scholar
Flint, J. L. and Barrett, M. 1989. Interactions of glyphosate with 2,4-D and dicamba. On field bindweed (Convolvulus arvensis). Weed Sci. 37:1218.Google Scholar
Glass, R. L. 1984. Metal complex formation by glyphosate. J. Agric. Food Chem. 32:12491253.Google Scholar
Gauvrit, C. 2003. Glyphosate response to calcium, ethoxylated amine surfactant, and ammonium sulfate. Weed Technol. 17:799804.Google Scholar
Hall, G. J., Hart, C. A., and Jones, C. A. 2000. Plants as sources of cations antagonistic to glyphosate activity. Pest Manag. Sci. 56:351358.Google Scholar
Hanson, C. L. and Rieck, C. E. 1976. The effect of iron and aluminum on glyphosate toxicity. Pages 49 in Proceedings of the 29th Annual Southern Weed Science Society Conference. Champaign, IL SWSS. [Abstract].Google Scholar
Hatzios, K. K. and Penner, D. 1985. Interaction of herbicides with other agricultural chemicals in higher plants. Rev. Weed Sci. 1:164.Google Scholar
Hensley, D. L., Beuerman, D. S. N., and Carpenter, P. L. 1978. The inactivation of glyphosate by various soils and metal salts. Weed Res. 18:287291.Google Scholar
Jordan, D. L., Warren, L. S. Jr., Miller, D. K., Smith, M. C., Reynolds, D. B., Crawford, S. H., and Griffin, J. L. 2001. Italian ryegrass control with preplant herbicides. J. Cotton Sci. 5:268274.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Madsen, H. E., Chistensen, H. H., and Gottlieb-Petersen, C. 1978. Stability constants of copper(II), zinc, manganese(II), calcium, and magnesium complexes of N-(phosphonomethyl)glycine (glyphosate). Acta Chem. Scand. A. 32:7983.Google Scholar
McBride, M. and Kung, K. H. 1989. Complexation of glyphosate and related ligands with iron(III). Soil Sci. Soc. Am. J. 53:16681673.Google Scholar
Motekaitis, R. J. and Martell, A. E. 1985. Metal chelate formation by N-phosphonomethyl glycine and related ligands. J. Coord. Chem. 14:139149.Google Scholar
Mueller, T. C., Main, C. L., Thompson, M. A., and Steckel, L. E. 2006. Comparison of glyphosate salts (isopropylamine, diammonium, and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technol. 20:164171.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1991. Salt antagonism of glyphosate. Weed Sci. 39:622628.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1992. Species differ in response to adjuvants with glyphosate. Weed Technol. 6:561566.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993a. Optimizing adjuvants to overcome glyphosate antagonistic salts. Weed Technol. 7:337342.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993b. Influence of diammonium sulfate and other salts on glyphosate phytotoxicity. Pestic. Sci. 38:7784.Google Scholar
Nilsson, G. 1985. Interactions between glyphosate and metals essential for plant growth. Pages in Grossbard, E. and Atkinson, D., eds. The Herbicide Glyphosate. London Butterworths.Google Scholar
O'Sullivan, P. A. and O'Donovan, J. T. 1980. Interactions between glyphosate and various herbicides for broadleaved weed control. Weed Res. 10:255260.Google Scholar
O'Sullivan, P. A., O'Donovan, J. T., and Hamman, W. M. 1981. Influence of nonionic surfactants, ammonium sulfate, water quality and spray volume on phytotoxicity of glyphosate. Can. J. Plant Sci. 61:391400.Google Scholar
Pearson, R. G. 1963. Hard and soft acids and bases. J. Am. Chem. Soc. 85:35333539.Google Scholar
Rankins, A. Jr., Shaw, D. R., and Holloway, J. C. Jr. 1995. Influence of adjuvant and application timing on Italian ryegrass (Lolium multiflorum) control with glyphosate. Pages 243 in Proceedings of the 48th Annual Southern Weed Science Society Conference. Champaign, IL SWSS. [Abstract].Google Scholar
Richardson, R. J., Wilson, H. P., Armel, G. R., and Hines, T. E. 2004. Mixtures of glyphosate with CG362622 for weed control in glyphosate-resistant cotton (Gossypium hirsutum). Weed Technol. 18:1622.Google Scholar
Sandberg, C. L., Meggitt, W. F., and Penner, D. 1978. Effect of diluent volume and calcium on glyphosate phytotoxicity. Weed Sci. 26:476479.Google Scholar
Scroggs, D. M., Miller, D. K., Stewart, A. M., Leonard, B. R., Griffin, J. L., and Blovin, D. C. 2009. Weed response to foliar co-applications of glyphosate and zinc sulfate. Weed Technol. 23:171174.Google Scholar
Shaw, D. R. and Arnold, J. C. 2002. Weed control from herbicide combinations with glyphosate. Weed Technol. 16:16.Google Scholar
Shea, P. J. and Tupy, D. R. 1984. Reversal of cation-induced reduction in glyphosate activity with EDTA. Weed Sci. 32:802806.Google Scholar
Shillevg, D. G. and Waller, W. T. 1989. Interaction effects of diluent pH and calcium content of glyphosate activity on Panicum repens L. (torpedograss). Weed Res. 29:441448.Google Scholar
Stahlman, P. W. and Phillips, W. M. 1979. Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27:3841.Google Scholar
Subramaniam, V. and Hoggard, P. E. 1988. Metal complexes of glyphosate. J. Agric. Food Chem. 336:1326–132.Google Scholar
Thelen, K. D., Jackson, E. P., and Penner, D. 1995. The basis for the hard-water antagonism of glyphosate activity. Weed Sci. 43:541548.Google Scholar
Tisdale, S. L., Nelson, W. L., Beaton, J. D., and Havlin, J. L. 1993. Soil Fertility and Fertilizers. 5th ed. New York Macmillan. Pp. 332337.Google Scholar
Vangessel, M. J., Ayeni, A. O., and Majek, B. A. 2001. Glyphosate in full-season no-till glyphosate-resistant soybean: role of preplant applications and residual herbicides. Weed Technol. 15:714724.Google Scholar
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci. 4:215231.Google Scholar
Wills, G. D. and McWhorter, C. G. 1985. Effect of inorganic salts on the toxicity and translocation of glyphosate and MSMA in purple nutsedge (Cyperus rotundus). Weed Sci. 33:755761.Google Scholar
Woodburn, A. T. 2000. Glyphosate: production, pricing, and use worldwide. Pest Manag. Sci. 56:309312.Google Scholar
Wrubel, R. P. and Gressel, J. 1994. Are herbicide mixtures useful for delaying the rapid evolution of resistance? a case study. Weed Technol. 8:635648.Google Scholar
Wyrill, J. B. III. and Bumside, O. C. 1976. Absorption, translocation, and metabolism of 2,4-D and glyphosate in common milkweed and hemp dogbane. Weed Sci. 24:557566.Google Scholar
Wyrill, J. B. III, and Burnside, O. C. 1977. Glyphosate toxicity to common milkweed and hemp dogbane as influenced by surfactants. Weed Sci. 25:275287.Google Scholar