Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:09:27.319Z Has data issue: false hasContentIssue false

Influence of Plant Height and Glyphosate on Saflufenacil Efficacy on Glyphosate-Resistant Horseweed (Conyza canadensis)

Published online by Cambridge University Press:  20 January 2017

Tracy G. Mellendorf
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Julie M. Young
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Joseph L. Matthews
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Bryan G. Young*
Affiliation:
Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
*
Corresponding author's E-mail: [email protected]

Abstract

A field study was conducted in 2007 and 2008 near Murphysboro, IL to determine the effect of plant height and addition of glyphosate on control of glyphosate-resistant horseweed with saflufenacil. Saflufenacil was applied at rates ranging from 25 to 125 g ai ha−1 alone and in combination with glyphosate at 840 g ae ha−1, and the efficacy compared to paraquat at 840 g ai ha−1. Control of horseweed with glyphosate applied alone was less than 30%, confirming the presence of glyphosate-resistant plants. At 14 d after application, all treatments with saflufenacil or paraquat provided at least 90% control. Saflufenacil applied alone at the lowest rate of 25 g ha−1 provided less control (92%) than all other treatments that included saflufenacil, and efficacy was reduced as horseweed height at application increased. Horseweed control from saflufenacil at 50 g ha−1 was reduced as plant height increased in 2007 but not in 2008. However, saflufenacil applied at 50 g ha−1 or greater resulted in at least 98% control, regardless of horseweed height at application or tank mixture with glyphosate. Combining glyphosate with saflufenacil at 25 g ha−1 increased horseweed control compared with saflufenacil applied alone and resulted in control similar to saflufenacil applied at 50 g ha−1. Control of horseweed from paraquat declined over time as the growth continued from the apical meristem. The extent of horseweed regrowth from applications of saflufenacil alone was less than that observed from paraquat. The addition of glyphosate to saflufenacil further reduced the frequency of horseweed regrowth compared with saflufenacil applied alone.

En 2007 y 2008, se realizó un estudio cerca de Murphysboro, IL para determinar el efecto de la altura de planta y la adición de glyphosate sobre el control de Conyza canadensis resistente a glyphosate con saflufenacil. Saflufenacil fue aplicado a dosis que fueron de 25 a 125 g ai ha−1 solo y en combinación con glyphosate a 840 g ae ha−1, y la eficacia de estos tratamientos se comparó con paraquat a 840 g ai ha−1. El control de C. canadensis con glyphosate aplicado solo fue menor a 30%, confirmando la presencia de plantas resistentes a glyphosate. A 14 d después de la aplicación, todos los tratamientos con saflufenacil o paraquat brindaron al menos 90% de control. Saflufenacil aplicado solo a la dosis más baja de 25 g ha−1 brindó menos control (92%) que todos los demás tratamientos que incluyeron saflufenacil, y la eficacia se redujo al incrementarse la altura de la maleza al momento de la aplicación. El control de C. canadensis con saflufenacil a 50 g ha−1 se redujo al aumentar la altura de las plantas al momento de la aplicación en 2007, pero no en 2008. Sin embargo, saflufenacil aplicado a 50 g ha−1 o más resultó en al menos 98% de control, sin importar la altura de C. canadensis al momento de la aplicación o la mezcla en tanque con glyphosate. El combinar glyphosate con saflufenacil a 25 g ha−1 aumentó el control de C. canadensis en comparación con saflufenacil aplicado solo y resultó en un control similar a saflufenacil aplicado a 50 g ha−1. El control de C. canadensis con paraquat disminuyó conforme pasó el tiempo y continuó el crecimiento a partir del meristemo apical. El nivel de rebrote de plantas de C. canadensis después de aplicaciones de solo saflufenacil fue menor que el nivel observado con paraquat. La adición de glyphosate a saflufenacil disminuyó aún más la frecuencia de rebrotes de C. canadensis en comparación con la aplicación de saflufenacil solo.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: South Central FS, Louisville, IL 62858.

References

Literature Cited

Anonymous. 2011. 2,4-D LV4 herbicide product label. Winfield Solutions, LLC Publication No. 1/1025/0. St. Paul, MN Winfield Solutions, LLC. 11 p.Google Scholar
Anonymous. 2010. Classic herbicide product label. E. I. du Pont de Nemours and Company Publication No. SL 1595 060410 06-01-10. Wilmington, DE DuPont. 15 p.Google Scholar
Anonymous. 2012. Sharpen herbicide product label. BASF Publication No. 007969-00278.20120307.NVA 2012-04-332-0046. Research Triangle Park, NC BASF. 20 p.Google Scholar
Bellinder, R. R., Arsenovic, M., Shah, D. A., and Rauch, B. J. 2003. Effect of weed growth stage and adjuvant on the efficacy of fomesafen and bentazon. Weed Sci. 51:10161021.Google Scholar
Davis, V. M., Gibson, K. D., Bauman, T. T., Weller, S. C., and Johnson, W. G. 2007. Influence of weed management practices and crop rotation on glyphosate-resistant horseweed population dynamics and crop yield. Weed Sci. 58:508516.Google Scholar
Eubank, T. W., Poston, D. H., Nandula, V. K., Koger, C. H., Shaw, D. R., and Reynolds, D. B. 2008. Glyphosate-resistant horseweed (Conyza canadensis) control using glyphosate-, paraquat-, and glufosinate-based herbicide programs. Weed Technol. 22:1621.Google Scholar
Frihauf, J. C., Stahlman, P. W., and Geier, P. W. 2010. Winter wheat and weed response to postemergence saflufenacil alone and in mixtures. Weed Technol. 24:262268.Google Scholar
Grossmann, K. R., Hutzler, J., Caspar, G., Kwiakowski, J., and Brommer, C. L. 2011. Saflufenacil (Kixor™): Biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Sci. 59:290298.Google Scholar
Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.Google Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol. 17:1420.Google Scholar
Heap, I. M. 2011. International Survey of Herbicide-Resistant Weeds. www.weedscience.org. Accessed September 20, 2011.Google Scholar
Jordan, D. L., York, A. C., Griffin, J. L., Clay, P. A., Vidrine, P. R., and Reynolds, D. B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technol. 11:354362.Google Scholar
Keeling, J. W., Henniger, C. G., and Abernathy, J. R. 1989. Horseweed (Conyza canadensis) control in conservation tillage cotton (Gossypium hirsutum). Weed Technol. 3:399401.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., Klein, R. N., and Golus, J. 2009. Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23:507512.Google Scholar
Lee, S. D. and Oliver, L. R. 1982. Efficacy of acifluorfen on broadleaf weeds. Times and methods for application. Weed Sci. 30:520526.Google Scholar
Loux, M. M. and Dobbels, A. F. 2008. Effectiveness of preemergence and postemergence soybean herbicides on common ragweed with resistance to glyphosate and ALS inhibitors. Proc. North Central Weed Sci. Soc. 63:22.Google Scholar
Mager, H. J., Young, B. G., and Preece, J. E. 2006. Efficacy of POST herbicides on weeds during compensatory growth. Weed. Sci. 54:321325.Google Scholar
Mayo, C. M., Horak, M. J., Peterson, D. E., and Boyer, J. E. 1995. Differential control of four Amaranthus species by six postemergence herbicides in soybean (Glycine max). Weed Technol. 9:141147.Google Scholar
Mellendorf, T. G., Young, B. G. and Matthews, J. L. 2007. Management of glyphosate-resistant horseweed for southern Illinois. Proc. North Cent. Weed Sci. Soc. 62:177.Google Scholar
Norris, J. L., Shaw, D. R., and Snipes, C. E. 2001. Weed control from herbicide combinations with three formulations of glyphosate. Weed Technol. 15:552558.Google Scholar
Owen, L. N., Mueller, T. C., Main, C. L., Bond, J., and Steckel, L. E. 2011. Evaluating rates and application timings of saflufenacil for control of glyphosate-resistant horseweed (Conyza canadensis) prior to planting no-till cotton. Weed Technol. 25:15.Google Scholar
Powell, D. K. 2011. Interaction of Postemergence Herbicides with Glyphosate in Soybean. . Carbondale, IL Southern Illinois University. 184 p.Google Scholar
Rinderer, J. L., Young, J. M., Matthews, J. L., Young, B. G., Roskamp, G. K., and Hager, A. G. 2009. Efficacy of preplant applications of glyphosate-, glufosinate-, and paraquat-based tank mixtures in no-till soybean. Proc. North Cent. Weed Sci. Soc. 64:21.Google Scholar
Starke, R. J. and Oliver, L. R. 1998. Interaction of glyphosate with chlorimuron, fomesafen, imazethapyr, and sulfentrazone. Weed Sci. 46:652660.Google Scholar
Sutton, P., Richards, C., Buren, L., and Glasgow, L. 2002. Activity of mesotrione on resistant weeds in maize. Pest Manag. Sci. 58:981984.Google Scholar
[USDA] U.S. Department of Agriculture. 2008. National Agricultural Statistics Service. Agricultural Chemical Use Database. http//www.pestmanagement.info/nass/app_usage.cfm. Accessed September 5, 2008.Google Scholar