Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T13:58:26.220Z Has data issue: false hasContentIssue false

Influence of Palmer Amaranth (Amaranthus palmeri) on the Critical Period for Weed Control in Plasticulture-Grown Tomato

Published online by Cambridge University Press:  20 January 2017

Paul V. Garvey Jr.
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Stephen L. Meyers*
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
David W. Monks
Affiliation:
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695
Harold D. Coble
Affiliation:
Office of Pest Management, U.S. Department of Agriculture–Agricultural Research Service, Raleigh, NC 27606
*
Corresponding author's E-mail: [email protected]

Abstract

Field studies were conducted in 1996, 1997, and 1998 at Clinton, NC, to determine the influence of Palmer amaranth establishment and removal periods on the yield and quality of plasticulture-grown ‘Mountain Spring' fresh market tomato. Treatments consisted of 14 Palmer amaranth establishment and removal periods. Half of the treatments were weed removal treatments (REM), in which Palmer amaranth was sowed at the time tomato transplanting and allowed to remain in the field for 0 (weed-free all season), 2, 3, 4, 6, 8, or 10 wk after transplanting (WAT). The second set of the treatments, weed establishment treatments (EST), consisted of sowing Palmer amaranth 0 (weedy all season), 2, 3, 4, 6, 8, or 10 WAT and allowing it to grow in competition with tomato the remainder of the season. Tomato shoot dry weight was reduced 23, 7, and 11 g plant−1 for each week Palmer amaranth removal was delayed from 0 to 10 WAT in 1996, 1997, and 1998, respectively. Marketable tomato yield ranged from 87,000 to 41,000 kg ha−1 for REM of 0 to 10 WAT and 28,000 to 88,000 kg ha−1 for EST of 0 to 6 WAT. Percentage of jumbo, large, medium, and cull tomato yields ranged from 49 to 33%, 22 to 31%, 2 to 6%, and 9 to 11%, respectively, for REM of 0 to 10 WAT and 30 to 49%, 38 to 22%, 3 to 2%, and 12 to 9%, respectively, for EST of 0 to 6 WAT. To avoid losses of marketable tomato yield and percentage of jumbo tomato fruit yield, tomato plots must remain free of Palmer amaranth between 3 and 6 WAT. Observed reduction in marketable tomato yield was likely due to competition for light as Palmer amaranth plants exceeded the tomato plant canopy 6 WAT and remained taller than tomato plants for the remainder of the growing season.

En 1996, 1997 y 1998, se realizaron estudios de campo en Clinton, North Carolina, para determinar la influencia del establecimiento y momento de remoción de Amaranthus palmeri en el rendimiento y la calidad del tomate para el mercado fresco 'Mountain Spring' producido con cobertura plástica. Los tratamientos consistieron en 14 períodos de establecimiento y remoción de A. palmeri. La mitad de los tratamientos fueron de remoción de la maleza (REM), en los cuales se sembró A. palmeri al momento del trasplante del tomate y se mantuvo en el campo por 0 (libre de malezas a lo largo de toda la temporada), 2, 3, 4, 6, 8 ó 10 semanas después del trasplante (WAT). El segundo grupo de tratamientos, establecimiento de la maleza (EST), consistió en la siembra de A. palmeri a 0 (enmalezado durante toda la temporada), 2, 3, 4, 6, 8 ó 10 WAT y permitiéndole crecer en competencia con el tomate durante el resto de la temporada. El peso seco de la parte aérea del tomate se redujo 23, 7 y 11 g planta−1 por cada semana que se retrasó la remoción de A. palmeri desde 0 a 10 WAT en 1996, 1997 y 1998, respectivamente. El rendimiento de tomate comercializable varió entre 87,000 a 41,000 kg ha−1 para REM de 0 a 10 WAT y 28,000 a 88,000 kg ha−1 para EST de 0 a 6 WAT. El porcentaje del rendimiento de tomates “jumbo”, grande, mediano y de rechazo varió de 49 a 33%, 22 a 31%, 2 a 6% y 9 a 11%, respectivamente para REM de 0 a 10 WAT y 30 a 49%, 38 a 22%, 3 a 2% y 12 a 9%, respectivamente para EST de 0 a 6 WAT. Para evitar pérdidas de rendimiento de tomate comercializable y de porcentaje de rendimiento de fruta jumbo, las parcelas de tomate deben permanecer libres de A. palmeri entre 3 y 6 WAT. Las reducciones en el rendimiento de tomate comercializable se debieron probablemente a la competencia por luz, ya que las plantas de A. palmeri sobrepasaron el dosel de las plantas de tomate a 6 WAT y se mantuvieron más altas que las plantas de tomate por el resto de la temporada de crecimiento.

Type
Weed Biology and Competition
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Atherton, J. G. and Harris, G. P. 1986. Flowering. Pages 167200 in Atherton, J. G. and Rudich, J., eds. The Tomato Crop: A Scientific Basis for Improvement. New York : Chapman and Hall.Google Scholar
Black, C. L., Chen, T. M., and Brown, R. H. 1969. Biochemical basis for plant competition. Weed Sci. 17 :338344.Google Scholar
Blackman, G. E. and Black, J. N. 1959. Physiological and ecological studies in the analysis of plant environment: XII. The role of the light factor in limiting growth. Ann. Bot. 23 :131145.Google Scholar
Brown, J. E., Goff, W. D., Hogue, W., West, M. S., Stevens, C., Khan, V. A., Early, B. C., and Brasher, L. S. 1991. Effects of plastic mulch on yield and earliness of tomato. Proc. Natl. Agr. Plastics Conf. 23 :2128.Google Scholar
Calvert, A. 1959. Effect of the early environment on the development of flowering in tomato: II. Light and temperature interactions. J. Hort. Sci. 34 :154162.Google Scholar
Donald, C. M. 1958. The interaction of competition for light and for nutrients. Aust. J. Agric. Res. 9 :421435.Google Scholar
Ho, L. C. and Hewitt, J. D. 1986. Fruit development. Pages 201240 in Atherton, J. G. and Rudich, J., eds. The Tomato Crop: A Scientific Basis for Improvement. New York : Chapman and Hall.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48 :347355.Google Scholar
Kemble, J. M., ed. 2012. Vegetable Crop Handbook for the Southeastern United States 2012. Lincolnshire, IL : Vance. Pp. 98102.Google Scholar
Kinet, J. M. 1977. Effect of light conditions on the development of the inflorescence in tomato. Sci. Hortic. 6 :1526.Google Scholar
Kinet, J. M. and Peet, M. M. 1997. Tomato. Pages 207258 in Wein, H. C., ed. The Physiology of Vegetable Crops. New York : Cab International. 662 p.Google Scholar
Massinga, R. A., Currie, R. S., and Trooien, T. P. 2003. Water use and light interception under Palmer amaranth (Amaranthus palmeri) and corn competition. Weed Sci. 51 :523531.Google Scholar
Meyers, S. L., Jennings, K. M., Schultheis, J. R., and Monks, D. W. 2010. Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci. 58 :199203.Google Scholar
Mohammed, E. S. and Sweet, R. D. 1978. Redroot pigweed (Amaranthus retroflexus L.) and tomato (Lycopersicon esculentum) competition studies. I. Influence of plant densities. Page 29 in Proceedings of the Weed Science Society of America.Google Scholar
Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36 :770774.Google Scholar
Norsworthy, J. K., Oliver, M. J., Jha, P., Malik, M., Buckelew, J. K., Jennings, K. M., and Monks, D. W. 2008. Palmer amaranth and large crabgrass growth with plasticulture-grown bell pepper. Weed Technol. 22 :296302.Google Scholar
Oliver, L. R. 1988. Principles of weed threshold research. Weed Technol. 2 :398403.Google Scholar
Pike, D. R., Stoller, E. W., and Wax, L. M. 1990. Modeling soybean growth and canopy apportionment in weed–soybean (Glycine max) competition. Weed Sci. 38 :522527.Google Scholar
Qasem, J. R. 1992. Pigweed (Amaranthus spp.) interference in transplanted tomato (Lycopersicon esculentum). J. Hort. Sci. 67 :421427.Google Scholar
Sellers, B. A., Smeda, R. J., Johnson, W. G., Kendig, J. A., and Ellersieck, M. R. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Sci. 51 :329333.Google Scholar
Spitters, C. J. and Aerts, R. 1983. Simulation of competition for light and water in crop–weed associations. Aspects Appl. Biol. 4 :467483.Google Scholar
Spitters, C. J. and Van Berg, J. P. 1982. Competition between crop and weeds: a system approach. Pages 137148 in Holzner, W. and Numata, M., eds. Biology and Ecology of Weeds. Boston : Dr. W. Junk.Google Scholar
Stahler, L. M. 1948. Shade and soil moisture as factors in competition between selected crops and bindweed (Convolvulus arvensis). J. Am. Soc. Agron. 40 :490502.Google Scholar
[USEPA] United States Environmental Protection Agency. 2008. Ozone Layer Depletion Regulatory Programs: The Phaseout of Methyl Bromide Montreal Protocol. http://www.epa.gov/ozone/mbr/index.html. Accessed: February 10, 2012.Google Scholar
[USDA] United States Department of Agriculture. 1997. United States Standards for Grades of Fresh Tomatoes. Washington, DC : U.S. Department of Agriculture. 14 p.Google Scholar
Webster, T. M. 2010. Weed survey—southern states. Page 255 in Proc. South Weed Sci. Soc. Available at http://www.swss.ws/NewWebDesign/Proceedings/Archives/2010%20Proceedings-SWSS.pdf. Accessed: September 1, 2012.Google Scholar
Webster, T. M. and Coble, H. D. 1997. Changes in the weed species composition of the southern United States: 1974 to 1995. Weed Technol. 11 :308317.Google Scholar
Wein, H. C. and Minotti, P. L. 1987. Growth, yield, and uptake of transplanted fresh-market tomato as affected by plastic mulch and initial nitrogen rate. J. Am. Soc. Hort. Sci. 112 :759763.Google Scholar