Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T04:54:13.087Z Has data issue: false hasContentIssue false

Influence of Herbicide Programs on Weed Management in Soybean with Resistance to Glufosinate and 2,4-D

Published online by Cambridge University Press:  20 January 2017

Brett D. Craigmyle
Affiliation:
Division of Plant Sciences, 205 Waters Hall, University of Missouri, Columbia, MO 65211
Jeffrey M. Ellis
Affiliation:
Dow Agrisciences LLC, 701 Tomahawk Court, Smithville, MO 64089
Kevin W. Bradley*
Affiliation:
Division of Plant Science, University of Missouri, 201 Waters Hall, Columbia, MO 65211
*
Corresponding author's E-mail: [email protected]

Abstract

A field experiment was conducted in Boone and Callaway counties in Missouri in 2010 and 2011 to investigate herbicide programs for the management of summer annual grass and broadleaf weeds in soybean resistant to 2,4-D and glufosinate. Results revealed that the addition of 0.56, 0.84, or 1.12 kg ha−1 2,4-D (amine) to either or both POST applications of glufosinate in a two-pass POST herbicide program increased control of common waterhemp compared to two POST applications of glufosinate alone. Similar levels of common cocklebur, giant foxtail, large crabgrass, and barnyardgrass control were achieved with any of the two-pass POST programs that contained 2,4-D compared to two-pass POST programs containing glufosinate alone. Similar control of these species was also achieved with the inclusion of 2,4-D in either the first or second pass of glufosinate. Two-pass programs resulted in the highest levels of weed control (90%). Annual grass and broadleaf weed control was as much as 59% lower when one-pass POST herbicide programs were compared to PRE followed by (fb) POST or two-pass POST programs. However, one-pass POST programs were sufficient to obtain exceptional control of common cocklebur and giant foxtail. Across all site years, soybean yields ranged from 2,680 to 3,100 kg ha−1 for all herbicide treatments, but did not differ statistically. Overall, results from these experiments indicate that compared to glufosinate alone, PRE fb POST or two-pass POST herbicide programs that incorporate 2,4-D amine with glufosinate in 2,4-D–resistant soybean enhance control of common waterhemp, while providing similar levels of control of other summer annual grass and broadleaf weeds.

Se realizó un experimento de campo en los condados Boone y Callaway en Missouri en 2010 y 2011 para investigar programas de herbicidas para el manejo de malezas anuales de verano de hoja ancha y gramíneas en soya resistente a 2,4-D y glufosinate. Los resultados revelaron que la adición de 0.56, 0.84 ó 1.12 kg ha−1 2,4-D (amine) a cualquiera o ambas aplicaciones POST de glufosinate en un programa de herbicidas POST con dos pases incrementó el control de Amaranthus rudis comparado a dos aplicaciones POST de glufosinate solo. Niveles similares de control de Xanthium strumarium, Setaria faberi, Digitaria sanguinalis y Echinochloa crus-galli fueron alcanzados con cualquiera de los programas POST de dos pases que contenían 2,4-D al compararse con los programas POST de dos pases que contenían glufosinate solo. Un control similar de estas especies se alcanzó con la inclusión de 2,4-D en ya sea el primer o segundo pase con glufosinate. Los programas de dos pases resultaron en los niveles de control más altos (90%). El control de malezas anuales gramíneas y de hoja ancha fue hasta 59% menor cuando programas de herbicidas POST de un pase fueron comparados con programas PRE seguidos por (fb) POST o programas POST de dos pases. Sin embargo, programas POST de un pase fueron suficiente para obtener un control excepcional de X. strumarium y S. faberi. A través de todos los sitios-años, el rendimiento de la soya varió entre 2,680 y 3,100 kg ha−1 para todos los tratamientos con herbicidas, pero estos no difirieron estadísticamente. En general, los resultados de estos experimentos indican que al compararse con glufosinate solo, PRE fb POST o programas POST de dos pases que incorporan 2,4-D amine con glufosinate en soya resistente al 2,4-D mejoran el control de A. rudis, mientras brindan niveles similares de control de otras malezas anuales de hoja ancha y gramíneas.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, D. D., Roeth, F. W., and Martin, A. R. 1996. Occurrence and control of triazine- resistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technol. 10 :570575.Google Scholar
Anonymous. 2011. Agri Star® 2,4-D Amine 4 product label. Ankeny, IA : Albaugh Inc., 5 p. http://www.cdms.net/LDat/ld4JF000.pdf. Accessed: March 13, 2012.Google Scholar
Barnes, J. W. and Oliver, L. R. 2004. Preemergence weed control in soybean with cloransulam. Weed Technol. 18 :10771090.Google Scholar
Carmer, S. G., Nyquist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two or three-factor treatment designs. Agron. J. 81 :665672.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations for bromoxynil, glufosinate, glyphosate, pyrithiobac, and sulfosate. Weed Technol. 18 :443453.Google Scholar
Ellis, J. M. and Griffin, J. L. 2002. Benefits of soil-applied herbicides in glyphosate-resistant soybean (Glycine max). Weed Technol. 16 :541547.Google Scholar
Eubank, T. W., Poston, D. H., Nandula, V. K., Koger, C. H., Shaw, D. R., and Reynolds, D. B. 2008. Glyphosate-resistant horseweed (Conyza canadensis) control using glyphosate-, paraquat-, and glufosinate-based herbicide programs. Weed Technol. 22 :1621.Google Scholar
Gardner, A. P., York, A. C., Jordan, D. L., and Monks, D. W. 2006. Management of annual grasses and Amaranthus spp. in glufosinate-resistant cotton. J. Cotton Sci. 10 :328338.Google Scholar
Gonzini, L. C., Hart, S. E., and Wax, L. M. 1999. Herbicide combinations for weed management in glyphosate-resistant soybean (Glycine max). Weed Technol. 13 :354360.Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: September 10, 2012.Google Scholar
Heatherly, L. G., Elmore, C. D., and Spurlock, S. R. 2002. Weed management systems for conventional and glyphosate-resistant soybean with and without irrigation. Agron. J. 94 :14191428.Google Scholar
Hennigh, D. S., Al-Khatib, K., and Tuinstra, M. R. 2010. Postemergence weed control in acetolactate synthase-resistant grain sorghum. Weed Technol. 24 :219225.Google Scholar
Johnson, W. G., Gibson, K. D., and Conley, S. P. 2007. Does weed size matter? An Indiana grower perspective about weed control timing. Weed Technol. 21 :542546.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., Klein, R. N., and Golus, J. 2009. Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23 :507512.Google Scholar
Koger, C. H., Burke, I. C., Miller, D. K., Kendig, J. A., Reddy, K. N., and Wilcut, J. W. 2007. MSMA antagonizes glyphosate and glufosinate efficacy on broadleaf and grass weeds. Weed Technol. 21 :159165.Google Scholar
Loux, M. 2008. Can the DHT trait solve all of our glyphosate resistance problems? Proc. North Cent. Weed Sci. Soc. 63 :86 [Abstract].Google Scholar
Mueller, T. C., Mitchell, P. D., Young, B. G., and Culpepper, A. S. 2005. Proactive versus reactive management of glyphosate-resistant or-tolerant weeds. Weed Technol. 19 :924933.Google Scholar
Mueller, T. C., Witt, W. W., and Barrett, M. 1989. Antagonism of johnsongrass (Sorghum halepense) control with fenoxaprop, haloxyfop, and sethoxydim by 2,4–D. Weed Technol. 3 :8689.Google Scholar
Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technol. 17 :195201.Google Scholar
Norsworthy, J. K. 2004. Soil-applied herbicide use in wide- and narrow-row glyphosate-resistant soybean (Glycine max). Crop Prot. 23 :12371244.Google Scholar
Norsworthy, J. K., Ward, S., Shaw, D., Llewellyn, R., Nichols, R., Webster, T. M., Bradley, K., Frisvold, G., Powles, S., Burgos, N., Witt, W., and Barrett, M. 2012. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci. 60(sp1) :3162.Google Scholar
Nurse, R. E., Hamill, A. S., Swanton, C. J., Tardif, F. J., Deen, W., and Sikkema, P. H. 2007. Is the application of a residual herbicide required prior to glyphosate application in no-till glyphosate-tolerant soybean (Glycince max)? Crop Prot. 26 :484489.Google Scholar
Owen, M. 2008. Review: Weed species shifts in glyphosate-resistant crops. Pest Manag. Sci. 64 :377387.Google Scholar
Payne, S. A. and Oliver, L. R. 2000. Weed control programs in drilled glyphosate-resistant soybean. Weed Technol. 14 :413422.Google Scholar
Sarabi, V., Mohassel, M.H.R., and Valizadeh, M. 2011. Response of redroot pigweed (Amaranthus retroflexus) to tank mixtures of 2,4-D plus MCPA with foramsulfuron. Aust. J. Crop Sci. 5 :605610.Google Scholar
Scherder, E. F., Schultz, M. E., Peterson, M. A., Ellis, J. M., Ditmars, S. C., Bradley, K. W., Smeda, R. J., and Johnson, W. G. 2009. Control of glyphosate-resistant and susceptible weeds with 2,4-D alone or in tank mixes with glyphosate. Proc. North Cent. Weed Sci. Soc. 64 :120 [Abstract].Google Scholar
Siebert, J. D., Griffin, J. L., and Jones, C. A. 2004. Red morningglory (Ipomoea coccinea) control with 2,4-D and alternative herbicides. Weed Technol. 18 :3844.Google Scholar
Simpson, D. M., Rune, D. C., Scherder, E. F., Peterson, M. A., Ditmars, S. C., Ellis, J. M., Richburg, J. S., and Ellis, D. T. 2009. Performance of Dow AgroSciences herbicide tolerance trait in soybean. Proc. North Cent. Weed Sci. Soc. 64 :21 [Abstract].Google Scholar
Steckel, L. E., Craig, C. C., and Hayes, R. M. 2006. Glyphosate-resistant horseweed (Conyza canadensis) control with glufosinate prior to planting no-till cotton (Gossypium hirsutum). Weed Technol. 20 :10471051.Google Scholar
Stewart, C. L., Nurse, R. E., Ban Eerd, L. L., Vyn, R. J., and Sikkema, P. H. 2011. Weed control, environmental impact, and economics of weed management strategies in glyphosate-resistant soybean. Weed Technol. 25 :535541.Google Scholar
[USDA] United States Department of Agriculture, National Agricultural Statistics Service. 1996. Agricultural Chemical Usage: 1995 Field Crops Summary. http://usda.mannlib.cornell.edu. Accessed: February 21, 2012.Google Scholar
Watts, J. R., Murdock, E. C., Stapleton, G. S., and Toler, J. E. 1997. Sicklepod (Senna obtusifolia) control in soybean (Glycine max) with single and sequential herbicide applications. Weed Technol. 11 :157163.Google Scholar
Wright, T. R., Shan, G., Walsh, T. A., Lira, J. M., Cui, C., Song, P., Zhuang, M., Arnold, N. L., Lin, G., Russell, S. M., Cicchillo, R. M., Peterson, M. A., Simpson, D. M., Zhou, N., Ponsamuel, J., Yau, K., and Zhang, Z. 2010. Robust crop resistance to broadleaf and grass herbicides provided by aryloxalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. U. S. A. 107 :2024020245.Google Scholar
Young, B. G. 1996. Interactions of sethoxydim and corn (Zea mays) postemergence broadleaf herbicides on three annual grasses. Weed Technol. 10 :914922.Google Scholar
Young, B. G. 2006. Changes in herbicide use patterns and production practices resulting from glyphosate-resistant crops. Weed Technol. 20 :301307.Google Scholar