Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T10:51:30.463Z Has data issue: false hasContentIssue false

The Influence of Carrier Water pH and Hardness on Saflufenacil Efficacy and Solubility

Published online by Cambridge University Press:  20 January 2017

Jared M. Roskamp
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
Ronald F. Turco
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907
Marianne Bischoff
Affiliation:
Department of Agronomy, Purdue University, West Lafayette, IN 47907
William G. Johnson*
Affiliation:
Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
*
Corresponding author's E-mail: [email protected]

Abstract

The pH and hardness of water used as agrochemical carrier can influence herbicide efficacy. The objective of this research was to determine the role of carrier water pH and hardness on saflufenacil efficacy and solubility. Saflufenacil was mixed in eight different carrier waters with one of five pH levels (4.0, 5.2, 6.5, 7.7, 9.0) or one of three hardness levels (0, 310, 620 mg L−1) and applied POST to common lambsquarters and giant ragweed in a field experiment and to field corn in a greenhouse experiment. Solubility testing was also completed on saflufenacil mixed in the five pH levels used in the field and greenhouse experiments. Water hardness did not influence the efficacy of saflufenacil on common lambsquarters, giant ragweed, or field corn. Control of giant ragweed or common lambsquarters in field experiments was reduced by up to 56% when saflufenacil was applied in water with a pH of 4.0 compared with water with a pH of 7.7. When nonsoluble saflufenacil was removed from the spray solution, saflufenacil efficacy on field corn in the greenhouse was reduced by 61% or more when applied in water with a pH of 4.0 than when applied with water with a pH of 5.2 or higher. When nonsoluble saflufenacil was applied with the soluble saflufenacil in the spray solution, at least a 7% reduction in control of field corn was observed when applied in water with pH of 4.0 as compared with saflufenacil applied in water with pH of 5.2 or higher. Solubility of saflufenacil was (1) 10.1 mg L−1 in water with a pH of 4.0, (2) 3,461.4 mg L−1 in water with a pH of 7.7, and (3) > 5,000 mg L−1 at a pH of 9. Some degradation of parent saflufenacil was detected in the pH at 9.0 treatment, with only 90% of added product being recovered after 3 d of storage. This research provides information on how saflufenacil efficacy and solubility is influenced by carrier water pH and potentially explains some differences noticed between field applications of saflufenacil.

El pH y la dureza del agua usada como medio para aplicaciones de agroquímicos puede influenciar la eficacia de los herbicidas. El objetivo de esta investigación fue determinar el rol del pH y dureza del agua para aplicación en la eficacia y solubilidad de saflufenacil. Se mezcló saflufenacil en ocho medios acuosos diferentes con uno de cinco niveles de pH (4.0, 5.2, 6.5, 7.7, 9.0) o uno de tres niveles de dureza (0, 310, 620 mg L−1) y se aplicó POST a Chenopodium album y Ambrosia trifida en un experimento de campo y a maíz en un experimento de invernadero. También se completaron pruebas de solubilidad a las mezclas de saflufenacil con los cinco niveles de pH usados en el experimento de campo y en el de invernadero. La dureza del agua no influenció la eficacia de saflufenacil sobre C. album, A. trifida, o maíz. En los experimentos de campo, el control de A. trifida o C. album se redujo hasta en 56% cuando saflufenacil se aplicó en agua con un pH 4.0 al compararse con agua con pH de 7.7. Cuando saflufenacil insoluble fue removido de la solución de aplicación, la eficacia de saflufenacil en maíz en el invernadero se redujo en 61% o más cuando el agua de aplicación tuvo pH de 4.0 en comparación con agua con pH de 5.2 o mayor. Cuando se aplicó saflufenacil insoluble con saflufenacil soluble en la solución de aplicación, se observó una reducción de al menos 7% de control en el maíz cuando se aplicó en agua con pH de 4.0 en comparación con saflufenacil aplicado en agua con pH de 5.2 o mayor. La solubilidad de saflufenacil fue (1) 10.1 mg L−1 en agua con pH de 4.0, (2) 3,461.4 mg L−1 en agua con pH 7.7, y (3) >5,000 mg L−1 a pH 9. Se detectó un poco de degradación de saflufenacil parental en el tratamiento con pH 9.0, con una recuperación de solamente 90% del producto agregado a la solución después de 3 d de almacenamiento. Esta investigación brinda información sobre cómo la eficacia y solubilidad de saflufenacil son influenciadas por el pH del agua de solución de aplicación y potencialmente explica algunas diferencias notadas entre aplicaciones de campo de saflufenacil.

Type
Weed Management—Other Crops/Areas
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abendroth, L. J., Elmore, R. W., Boyer, M. J., and Marlay, S. K. 2011. Corn growth and development. Ames, IA Iowa State University Extension and Outreach PMR 1009.Google Scholar
Altland, J. 2010. Water Quality Affects Herbicide Efficacy. http://oregonstate.edu/dept/nursery-weeds/feature_articles/spray_tank/spray_tank.htm. Accessed October 2, 2012.Google Scholar
Anonymous. 2013. Sharpen® supplemental herbicide product label in soybean. BASF Publication No. NVA 2010-04-322-0141. Research Triangle Park, NC BASF. 2 p.Google Scholar
Callow, K. and Deveau, J. 2010. Hort Matters: Water Quality Affects Herbicide Efficacy. http://www.omafra.gov.on.ca/english/crops/hort/news/hortmatt/2010/05hrt10a1.htm. Accessed October 2, 2012.Google Scholar
Chahal, G., Roskamp, J., Legleiter, T. R., and Johnson, W. G. 2012. The Influence of Spray Water Quality on Herbicide Efficacy. https://ag.purdue.edu/btny/weedscience/documents/Water_Quality.pdf Accessed March 12, 2013.Google Scholar
Green, J. M. and Cahill, W. R. 2003. Enhancing the biological activity of nicosulfuron with pH adjusters. Weed Technol. 17:338345.Google Scholar
Green, J. M. and Hale, T. 2005. Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 19:468475.Google Scholar
Griffin, J. L. 2009. Water Quality Effects on Pesticides. http://www.laca1.org/Presentations/2009/WaterQualityEffects2009.pdf. Accessed October 2, 2012.Google Scholar
Grossmann, K., Niggeweg, R., Christiansen, N., Looser, R., and Ehrhardt, T. 2010. The herbicide saflufenacil (Kixor) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19.Google Scholar
Heap, I. 2012. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed October 2, 2012.Google Scholar
[IDNR] Indiana Department of Natural Resources. 1999. Ambient Ground Water Chemistry. http://www.in.gov/dnr/water/5246.htm. Accessed October 2, 2012.Google Scholar
Liu, Z. Q. 2004. Bentazone uptake into plant foliage as influenced by surfactants and carrier pH. Aust. J. Agric. Res. 55:967971.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2009. Adjuvants influenced saflufenacil efficacy on fall-emerging weeds. Weed Technol. 23:340345.Google Scholar
Knezevic, S. Z., Datta, A., Scott, J., and Charvat, L. D. 2010. Application timing and adjuvant type affected saflufenacil efficacy on selected broadleaf weeds. Crop Prot. 29:9499.Google Scholar
Kruger, G. R., Johnson, W. G., Weller, S. C., Owen, M.D.K., Shaw, D. R., Wilcut, J. W., Jordan, D. L., Wilson, R. G., Bernards, M. L., and Young, B. G. 2009. U.S. grower views on problematic weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol. 23:162166.Google Scholar
McMullan, P. M. 2000. Utility adjuvants. Weed Technol. 14:792797.Google Scholar
Mudge, C. R., Haller, W. T., Netherland, M. D., and Kowalsky, J. K. Evaluating the influence of pH dependent hydrolysis on the efficacy of flumioxazin for hydrilla control. J. Aquat. Plant Manag. 48:2530.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1991. Salt antagonism of glyphosate. Weed Sci. 39:622628.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993a. Influence of diammonium sulfate and other salts on glyphosate phytotoxicity. Pestic. Sci. 39:7784.Google Scholar
Nalewaja, J. D. and Matysiak, R. 1993b. Spray carrier salts affect herbicide toxicity to kochia (Kochia scoparia). Weed Technol. 7:154158.Google Scholar
Nalewaja, J. D., Matysiak, R., and Woznica, Z., inventors; North Dakota State University, assignee. 1997. Adjuvants for herbicidal compositions. U.S. patent 5,658,855.Google Scholar
Nalewaja, J. D., Woznica, Z., and Matysiak, R. 1991. 2,4-D amine antagonism by salts. Weed Technol. 5:873880.Google Scholar
Odero, D. C. 2011. Impact of Water Quality on Herbicide Efficacy. http://erec.ifas.ufl.edu/weeds/pdfdocs/Impact%20of%20Water%20Quality%20on%20Herbicide%20Efficacy.pdf. Accessed October 2, 2012.Google Scholar
O'Sullivan, P. A., O'Donovan, J. T., and Hamman, W. M. 1981. Influence of non-ionic surfactants, ammonium sulfate, and nozzle effects on glyphosate efficacy. Can. J. Plant Sci. 61:391400.Google Scholar
Sandberg, C. L., Meggitt, W. F., and Penner, D. 1978. Effect of diluent volume and calcium on glyphosate phytotoxicity. Weed Sci. 26:476479.Google Scholar
Seaman, A. J. and Riedl, H. 1986. Preventing Decomposition of Agricultural Chemicals by Alkaline Hydrolysis in the Spray Tank. N. Y. Food Life Sci. Bull. 118. http://fls.cals.cornell.edu/OCRPDF/118.pdf. Accessed June 29, 2012.Google Scholar
Shea, P. J. and Tupy, D. R. 1984. Reversal of cation-induced reduction in glyphosate activity with EDTA. Weed Sci. 32:802806.Google Scholar
Stahlman, P. W. and Phillips, W. M. 1979. Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27:3841.Google Scholar
Sterling, T. M. 1994. Mechanisms of herbicide absorption across plant membranes and accumulation in plant cells. Weed Sci. 42:263276.Google Scholar
Thelen, K. D., Jackson, E. P., and Penner, D. 1995. The basis for the hard-water antagonism of glyphosate activity. Weed Sci. 43:541548.Google Scholar
[U.S. EPA] U.S. Environmental Protection Agency (U.S. EPA). 2009. Pesticide Fact Sheet, Saflufenacil. http://fls.cals.cornell.edu/OCRPDF/118.pdf. Accessed June 29, 2012.Google Scholar
Woznica, Z., Nalewaja, J. D., Messersmith, C. G., and Milkowski, P. 2003. Quinclorac efficacy as affected by adjuvants and spray carrier water. Weed Technol. 17:582588.Google Scholar