Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:00:08.147Z Has data issue: false hasContentIssue false

Impact of Nitrogen and Weeds on Glyphosate-Resistant Sugarbeet Yield and Quality

Published online by Cambridge University Press:  20 January 2017

Alicia J. Spangler
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824
Christy L. Sprague*
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824
Kurt Steinke
Affiliation:
Department of Plant, Soil, and Microbial Sciences, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824
*
Corresponding author's E-mail: [email protected].

Abstract

Field experiments were conducted in 2010 and 2011 at two locations in Michigan to determine the effects of nitrogen and weed removal on glyphosate-resistant sugarbeet yield and quality. Nitrogen rates were 0, 67, 100, 134, and 67 : 67 kg N ha−1, and weeds were removed when they were < 2, 8, 15, and 30 cm tall. At the beginning of the growing season, weeds responded to N sooner than sugarbeet. Nitrogen assimilation by weeds was three times greater than sugarbeet at 0, 67, 100, and 134 kg N ha−1 and four times greater than sugarbeet with the split application of N (67 : 67 kg N ha−1) averaged over the weed removal timings. Higher N rates increased N sufficiency index values and sugarbeet canopy closure; weeds 30 cm tall had lower N sufficiency index values and a smaller sugarbeet canopy. The effect of N on root yields varied, but the highest N rates (134 kg N ha−1 or 67 : 67 kg N ha−1) were among the highest sugarbeet yields at all locations. Highest yields were achieved when weeds were controlled before reaching 2 cm tall at three of the four site-years. Delaying weed control until weeds were 8 or 15 cm tall reduced yield by 15%, whereas 30-cm-tall weeds reduced yield up to 21%. Recoverable white sucrose ha−1 (RWSH) also was reduced by 8 to 16% if weeds were 8 cm tall. These results indicate that weeds are highly competitive with sugarbeet and can assimilate large quantities of N early in the growing season, especially at larger growth stages. However, it appears that sugarbeets were able to scavenge sufficient N at the N rates used in this study to overcome N removal effects from larger weeds, resulting in no interaction between N rate and weed removal timing for sugarbeet root yield, quality, or RWSH.

En 2010 y 2011, se realizaron experimentos de campo en dos localidades en Michigan para determinar los efectos de aplicaciones de nitrógeno y la remoción de malezas en el rendimiento y la calidad de la remolacha azucarera resistente a glyphosate. Las dosis de nitrógeno fueron 0, 67, 100, 134, y 67:67 kg N ha−1, y las malezas fueron removidas cuando tuvieron una altura <2, 8, 15, y 30 cm. Al inicio de la temporada de crecimiento, las malezas respondieron al N antes que la remolacha. Al promediarse todos los momentos de remoción de malezas, la asimilación de N por las malezas fue tres veces mayor que la de la remolacha a 0, 67, 100, y 134 kg N ha−1 y cuatro veces mayor que la remolacha con la aplicación dividida de N (67:67 kg N ha−1). Las dosis más altas de N incrementaron los valores del índice de suficiencia de N y el cierre del dosel de la remolacha. Las malezas de 30 cm de altura tuvieron valores del índice de suficiencia de N más bajos y un dosel de la remolacha más pequeño. El efecto de N en los rendimientos de raíces variaron, pero las dosis más altas de N (134 kg N ha−1 ó 67:67 kg N ha−1) tuvieron los rendimientos de remolacha más altos en todas las localidades. Los rendimientos más altos fueron alcanzados cuando se controló las malezas antes de que alcanzaran 2 cm de altura, en tres de los cuatro sitios-año. El retrasar el control de malezas hasta que estas tuvieron 8 ó 15 cm de altura, redujo el rendimiento en 15%, mientras que malezas de 30 cm de altura redujeron el rendimiento en hasta 21%. Sucrose blanca recuperable ha−1 (RWSH) también se redujo entre 8 y 16% si las malezas tuvieron 8 cm de altura. Estos resultados indican que las malezas son altamente competitivas con la remolacha y pueden asimilar grandes cantidades de N temprano en la temporada de crecimiento, especialmente en estados de crecimiento más grandes. Sin embargo, parece que las remolachas fueron capaces de buscar y absorber suficiente N a las dosis de N usadas en este estudio, para compensar los efectos de la remoción de N por las malezas más grandes, lo que resultó en la ausencia de interacciones entre la dosis de N y el momento de remoción de malezas en el rendimiento, calidad y RWSH de la remolacha.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, FN, Peterson, GA (1988) Effect of incrementing nitrogen application on sucrose yield of sugarbeet. Agron J 5:709–117Google Scholar
Armstrong, JJQ, Sprague, CL (2010) Weed management in wide- and narrow-row glyphosate-resistant sugarbeet. Weed Technol 24:523528 Google Scholar
Bast, LE (2012) Influence of Weeds on Nitrogen Cycling in Corn Agro-Ecosystems. Ph.D Dissertation. East Lansing, MI: Michigan State University. 8 pGoogle Scholar
Blackshaw, RE, Brandt, RN (2008) Nitrogen fertilizer rate effects on weed competitiveness is species dependent. Weed Sci 56:743747 Google Scholar
Blackshaw, RE, Brandt, RN, Janzen, HH, Entz, T, Grant, CA, Derksen, DA (2003) Differential response of weed species to added nitrogen. Weed Sci 51:532539 Google Scholar
Bremner, JM (1996) Nitrogen—total. Pages 10851121 in Sparks, DL, ed. Methods of Soil Analysis. Part 3, Chemical Methods. Book Series 5. Madison, WI: Soil Science Society of America.Google Scholar
Briscoe, P, Draycott, P, Jaggard, K (1980) Weather and the growth of sugar beet. Brit Sugar Beet Rev 48:4749 Google Scholar
Cariolle, M, Duval, R (2006) Nutrition—nitrogen. Pages 169184 in Draycott, AP, ed. Sugar Beet. Ames, IA: Blackwell Publishing Professional.Google Scholar
Carter, JM, Traveller, DJ (1981) Effect of time and amount of nitrogen uptake on sugarbeet growth and yield. Agron J 73:655671 Google Scholar
Carter, JN, Westermann, DT, Jensen, DE (1976) Sugarbeet yield and quality as affected by nitrogen level. Agron J 68:4955 Google Scholar
Dale, TM, Renner, KA (2005) Timing of postemergence micro-rate applications based on growing degree days in sugarbeet. J Sugar Beet Res 42:87101 Google Scholar
Draycott, AP (1993) Nutrition. Pages 239250 in Cooke, DA, Scott, RK, eds. The Sugar Beet Crop: Science into Practice. New York: Chapman & Hall.Google Scholar
Evans, SP, Knezevic, SZ, Lindquist, JL, Shapiro, CA, Blankenship, EE (2003). Nitrogen application influences the critical period for weed control in corn. Weed Sci 51:408417 Google Scholar
Everman, WJ, Clewis, SB, Thomas, WE, Burke, IC, Wilcut, JW (2008) Critical period of weed interference in peanut. Weed Technol 22:6367 Google Scholar
Guza, CJ, Ransom, CV, Mallory-Smith, C (2002) Weed control in glyphosate-resistant sugarbeet (Beta vulgaris L.). J Sugar Beet Res 39:109123 Google Scholar
Jung, S, Rickert, DA, Deak, NA, Aldin, ED, Recknor, J, Johnson, LA, Murphy, PA (2003) Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products. J Am Oil Chem Soc 80:11691173 Google Scholar
Kemp, NJ, Taylor, EC, Renner, KA (2009) Weed management in glyphosate- and glufosinate-resistant sugar beet. Weed Technol 23:416424 Google Scholar
Knezevic, SZ, Evans, SP, Blankenship, EE, Van Acker, RC, Lindquist, JL (2002) Critical period for weed control: the concept and data analysis. Weed Sci 50:773786 Google Scholar
Kniss, AR, Wilson, RG, Martin, AR, Burgener, PA, Feuz, DM (2004) Economic evaluation of glyphosate-resistant and conventional sugar beet. 2004. Weed Technol 18:388396 Google Scholar
Schepers, JS, Francis, DD, Vigil, M, Below, FE (1992) Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun Soil Sci Plant Anal 23:21732187 Google Scholar
Schweizer, EE, May, MJ (1993) Weeds and weed control. Pages 485519 in Cooke, DA, Scott, RK, eds. The Sugar Beet Crop: Science into Practice. New York: Chapman & Hall Google Scholar
Scott, RK, Jaggard, KW (1993) Crop physiology and agronomy. Pages 179237 in Cooke, DA, Scott, RK, eds. The Sugar Beet Crop: Science into Practice. New York: Chapman & Hall.Google Scholar
Shapiro, CA, Schepers, JS, Francis, DD, Shanahan, JF (2006) Using a chlorophyll meter to improve N management. Lincoln, NE: University of Nebraska-Lincoln Extension Bulletin G1632, Institution of Agriculture and Natural Resources.Google Scholar
Wilson, RG, Yonts, CD, Smith, JA (2002) Influence of glyphosate and glufosinate on weed control and sugarbeet (Beta vulgaris) yield in herbicide-tolerant sugarbeet. Weed Technol 16:6673 Google Scholar